they state that end-tidal carbon dioxide (ETCO2) is a

aspects of our model deserve additional explanation. First, open airways.

gives an indication of respiratory effort.2 The low values of and abdominal movement of subjects and monitored pulse

distinct measures. We continuously observed the thoracic

by one of the investigators, and aimed at keeping the airway

through a mask placed over nose and mouth, held in position

healthy volunteers. The subjects inhaled and exhaled

the respiratory responses observed in our cohort of young

ponent that accounts for airway patency. The reason for this
decision was simply that airway collapse did not play a role in

tentionally did not incorporate in our current model a com-

Although we certainly considered obstructive apnea, we in-

poration of airway collapse in the pharmacodynamic model.

Second, Overdyk and Hillmann state that our model does

not incorporate a controller and a plant. In our second fig-

ure,1 we presented both elements; the controller is high-

lighted, and the top part (i.e., carbon dioxide kinetics) is the

plant. Because we have a medical audience, we decided not to

use wording specific to engineering when defining the plant

part of our model. Interested readers may wish to refer to

Lennart Ljung’s System Identification: Theory for the User


Third, we do take CO2 kinetics into account and, conse-

quently, PCO2 is a dependent variable.

Finally, we measured arterial carbon concentrations at

various time points during our experiments (data not shown).

Although the values we observed were somewhat

higher than ETCO2 values, they closely followed patterns

observed for end-tidal PCO2. We refer readers to the first

equation and figure 2 of our original article.1 Our model was

based on end-tidal PCO2 for various reasons. It is an easily

measured variable and, consequently, may be used clinically

as well.

The use of arterial lines for repetitive arterial carbon di-

oxide measurements is sometimes problematic.3 See, for

example, reference 3, where we acknowledge the discussion we

had with our ethics committee regarding placement of arte-

rinal lines in healthy volunteers.3 In addition, using arterial

PCO2 as a model output requires frequent sampling, which

has stimulatory effects on breathing.4 To the best of our

knowledge, there are no studies with arterial sampling regi-

mens that come close to the frequency of that used in our

most recent study.1 We submit that, relative to sparse (e.g.,
two or three times per min) arterial carbon dioxide measure-

ments, the use of frequent ETCO2 data points increases the

reliability of model parameter estimates. Our model enables

realistic simulations of the ventilatory effects of opioids and

sedatives with ETCO2 as output.

As stated previously,4 breathing in the perioperative pa-

tient is under the influence of many factors, including respi-

ratory drive, arousal state, and the functionality of pharyn-

geal dilating muscles. Opioids, anesthetics, and sedatives

have an effect on all three elements. In our most recent

study,1 we explored their effect on the ventilatory drive only.

The effect of these agents on changes in arousal state and

upper-airway patency requires further investigation.

Erik Olofsen, M.Sc., Albert Dahan, M.D., Ph.D.*

"Leiden University Medical Center, Leiden, The Netherlands.
a.dahan@lumc.nl

References

1. Olofsen E, Boom M, Nieuwenhuys D, Sarton E, Teppema L, Aarts L, Dahan A: Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. ANESTHESIOLOGY 2010; 112:1382–95


References

1. Olofsen E, Boom M, Nieuwenhuys D, Sarton E, Teppema L, Aarts L, Dahan A: Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. ANESTHESIOLOGY 2010; 112:1382–95


In Reply:

We thank Drs. Overdyk and Hillmann for their interest in our study on the dynamic modeling of the respiratory effects of remifentanil and propofol in humans.1

In their comments, they raise an important issue—incor-

poration of airway collapse in the pharmacodynamic model. Although we certainly considered obstructive apnea, we in-

tentionally did not incorporate in our current model a com-

ponent that accounts for airway patency. The reason for this
decision was simply that airway collapse did not play a role in

the respiratory responses observed in our cohort of young

healthy volunteers. The subjects inhaled and exhaled

through a mask placed over nose and mouth, held in position

by one of the investigators, and aimed at keeping the airway

open. Furthermore, we controlled for airway patency by two

distinct measures. We continuously observed the thoracic

and abdominal movement of subjects and monitored pulse

transit time. Pulse transit time is a noninvasive measure that
gives an indication of respiratory effort.2 The low values of

end-tidal PCO2 observed close to apnea are not the result of

airway obstruction, but rather very low tidal volumes with

open airways.

Overdyk and Hillmann’s comments suggest that some

aspects of our model deserve additional explanation. First, they state that end-tidal carbon dioxide (ETCO2) is an input for the model. This supposition is incorrect. In-

stead, ETCO2 and measured minute ventilation are biva-

riate model outputs. We refer readers to equations 3 and 4

in our model.1 Remifentanil concentration and propofol

are the model inputs.

*Medical University of South Carolina, Charleston, South

Carolina. overdykf@musc.edu

References

1. Olofsen E, Boom M, Nieuwenhuys D, Sarton E, Teppema L, Aarts L, Dahan A: Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. ANESTHESIOLOGY 2010; 112:1382–95

2. Overdyk FJ: Postoperative opioids remain a serious patient

safety threat. ANESTHESIOLOGY 2010; 113:259–60


airway collapsibility during slow induction of anesthesia with

propofol. ANESTHESIOLOGY 2009; 111:63–71


anisms at the hypoglossal motor pool and effects on tongue mus-


5. Younes M: Role of respiratory control mechanisms in the


6. White DP: Pathogenesis of obstructive and central sleep

apnea. Am J Respir Crit Care Med 2005; 172:1363–70

7. Eastwood PR, Szollosi I, Platt PR, Hillman DR: Comparison of

upper airway collapse during general anaesthesia and sleep.

Lancet 2002; 359:1207–9


remifentanil in the non-steady state. ANESTHESIOLOGY 2003; 99:779–87

(Accepted for publication September 22, 2010.)


(Accepted for publication September 22, 2010.)

Multiples of Minimal Alveolar Concentration of Volatile Agents Are Not Necessarily Equipotent

To the Editor:

I read with interest the article titled, “Isoflurane Causes Greater Neurodegeneration Than an Equivalent Exposure of Sevoflurane in the Developing Brain of Neonatal Mice,” in the June 2010 issue of Anesthesiology by Liang et al.1 The entire premise of the article is based on the assumption that 0.5 MAC of isoflurane is equipotent to 0.5 MAC of sevoflurane. Furthermore, the authors not only assume that these partial MAC values are equipotent for motion on surgical stimulation (the original comparative endpoint for MAC in humans), but that they are also equipotent for neurodegeneration in the developing mouse brain. I would submit that neither assumption is valid.

As early as 1970, Waud and Waud2 published an editorial in Anesthesiology explaining that MAC is only one point on an entire dose–response curve. This editorial inspired follow-up letters to the editor in support.3–5 I can find no evidence in the literature that, to date, the shape of the entire dose–response curve for percentages of patients showing motion on stimulation versus end-tidal concentration for any volatile agent has been established. For example, the percentage of patients who will move on surgical stimulation under 0.5 MAC versus 1.5 MAC, etc., remains unknown. There is certainly no assurance that the dose–response curve for any volatile agent will parallel any other dose–response curve for the volatile agents. Moreover, MAC is really a median minimal alveolar concentration, and there is no assurance that any specific MAC value holds true for any given patient or mouse.

In addition to the unverified assumption that partial MAC values are equipotent, even for percentages of patients moving with surgical stimulation, the authors go on to make the assumption that partial MAC values are also equipotent for an entirely different dose–response curve (neurodegeneration in the developing mouse brain vs. alveolar concentration). Even full MAC values for motion cannot be assumed to be equipotent between agents for a totally different dose–response curve. Likewise, if the equipotency of partial MAC values cannot be assumed for the original dose–response curve, it is at least equally invalid to assume equipotency of those partial MAC values when they are transferred to a totally different dose–response curve. The authors have not yet established a valid full MAC value for neurodegeneration in their study population. However, even if they did, there is no validity in assuming that partial MAC values for that dose–response curve would be equipotent, unless the authors determined the shape of the entire dose–response curve for each agent tested.

The authors only can assert with validity that, when given 0.5 MAC of isoflurane and 0.5 MAC of sevoflurane, there seems to be greater neurodegeneration in the developing mouse brain with isoflurane. The assertion that the mice have been administered equipotent doses of the two volatile agents can be supported by neither the definition of MAC nor the medical literature to date.

David A. Cross, M.D., Scott and White Healthcare/ Texas A&M Health Sciences Center, Temple, Texas. dacross@swmail.sw.org

References


(Accepted for publication September 27, 2010.)

In Reply:

We thank Dr. Cross for his insightful comments concerning our recent article.1 Dr. Cross makes several excellent points in regard to the nonlinear dose–response curves and the validity of partial minimum alveolar concentration (MAC) values.

In 1963, Merkel and Eger2 originated the term MAC, describing it as an “index of comparison” for different anesthetic agents. They defined 1 MAC as the end-tidal concentration of anesthetic that prevents movement in 50% of animals in response to a supramaximal painful stimulus.3 Subsequently, the use of MAC, to represent “a unifying concept of inhaled anesthetic potency” has grown to incorporate other clinical endpoints, such as MAC awake, MAC intubation, and MAC-BAR (blunt autonomic reflexes).3,4

Supported by the National Institute of General Medical Science, National Institutes of Health, Baltimore, Maryland, K08 grant (1-K08-GM-073224, to Dr. Wei) and R01 grant (1-R01GM084979-01, 3R01GM084979-02S1 to Dr. Wei).