ious stimuli during isoflurane or sevoflurane anesthesia. 


23. Chan MT, Gin T: Postpartum changes in the minimum alveolar concentration of isoflurane. ANESTHESIOLOGY 1995; 82:1360–3


26. Chin KJ, Yeo SW: Bispectral index values at sevoflurane concentrations of 1% and 1.5% in lower segment cesarean delivery. Anesth Analg 2004; 98:1140–4


ANESTHESIOLOGY REFLECTIONS

The Schneider Brain Wave Synchronizer

After observing how some radar technicians had become “transfixed” by rhythmic flashing dots on their radar screens, inventor Sidney Schneider designed his Brain Wave Synchronizer (BWS) to hypnotize by visually stimulating subjects at frequencies mimicking those of their alpha, beta, or delta brainwaves. In 1959 Schneider and hypnotist-obstetrician William Kroger, M.D., published their use of the BWS in prenatal classes for thousands of women prior to its use as an “electronic aid for hypnotic induction” during labor and delivery. Four years later, Chicago anesthesiologist Max S. Sadove, M.D., published his work on how BWS-induced hypnosis could reduce anesthetic agent requirements during general anesthesia. By 1994 the BWS would be cited for causing epileptic seizures in a patient. (Copyright © the American Society of Anesthesiologists, Inc. This image appears in color in the Anesthesiology Reflections online collection available at www.anesthesiology.org.)

George S. Bause, M.D., M.P.H., Honorary Curator, ASA’s Wood Library-Museum of Anesthesiology, Park Ridge, Illinois, and Clinical Associate Professor, Case Western Reserve University, Cleveland, Ohio. UJYC@aol.com.