Learning Disabilities May Be Related to Undetected Hypoxia

To the Editor:—The recent article by Wilder et al.1 presents a concerning correlation between multiple episodes of anesthesia in childhood and later learning disabilities. In the discussion of possible causes for this correlation, they focus on the known neurotoxicity of various anesthetic agents in vitro and in animal studies. They identify some possible sources of bias in their study but neglect to mention one of the most significant changes in anesthetic practice, which occurred after the majority of these children were likely anesthetized before the routine use of pulse oximetry and capnography (1976–1982) became a part of the American Society of Anesthesiologists standards for perioperative monitoring and the availability of pulse oximetry coincided with a great reduction in the incidence of undetected hypoxia and resultant injury.

Pulse oximetry was developed in the 1970s2 but only became commonly used in anesthesia at the end of the 1980s and was made a part of the American Society of Anesthesiologists standards for basic anesthetic monitoring. The introduction of a standard for monitoring and the availability of pulse oximetry coincided with a great reduction in the incidence of undetected hypoxia and resultant injury as demonstrated at Harvard at the time.3 Because the children in this study received their anesthesia in the period 1976 through 1986, the possibility that their increased incidence of learning disabilities might have resulted partly from undetected hypoxia brief or mild enough not to have caused injury that was immediately obvious should not be discounted. A comparison with children who received a more current standard of monitoring after 1990 would be helpful in determining the likely magnitude of this effect.

James A. Mitchell, M.B., B.S., St Vincent’s Hospital, Fitzroy, Victoria, Australia. jamesmitchell@mac.com

References

Learning Disability and Repeated Anesthetics: Drugs or Airway Management Issues?

To the Editor:—Regarding the article by Wilder et al.,3 this research is an important step in the right direction to either prove or disprove the association of learning disabilities with multiple exposures to anesthesia in the early years of life possibly caused by anesthetic agent-induced neuroapoptosis. The authors are to be congratulated for making a stab at this complex issue, and not connecting the dots directly but rightfully pointing out that many factors might contribute to their findings that are unrelated to anesthesia. However, one important factor that seems to have been overlooked is that the majority of these children were likely anesthetized before the routine use of pulse oximetry and capnography (1976–1982) became our standard of care. We do not know what happens to a child who is excessively ventilated for prolonged periods of time, resulting in severe hypocapnia and possibly reduced areas of cerebral perfusion. Nor do we know how many of these children experienced prolonged or repeated short episodes of hypoxemia that were either unrecognized or only recognized late in the event, when the child developed bradycardia that could have resulted in subtle neurologic insults. In the early years when capnography was first being advocated but not yet a standard of care, in a prospective study of 351 children, we found an 11% incidence of hypocapnia (expired carbon dioxide value ≤ 30 mmHg) in intubated children, with a very high incidence in children younger than 1 yr.5 Likewise, in two randomized blinded studies involving 554 children, we found 94