In Reply.—We thank Drs. X and Irwin for their interest in our study on the role of β-adrenergic signaling in anesthetic postconditioning and in the accompanying editorial view. We agree with Drs. X and Irwin that, besides their energy-sparing effect, several alternative mechanisms of β blockers might be responsible for their infant size-reducing capacity. Apart from their effect on the interaction between β receptor activation and reactive oxygen species production and scavenging, β blockers can inhibit calcium/calmodulin-dependent protein kinase II and phospholipase A2, exert membrane stabilizing effects, and may even have direct effects on mitochondrial electron transport and reactive oxygen species production. The role of alternative mechanisms is certainly supported by the finding that infant size reduction by β blockade is independent of heart rate, the main determinant of myocardial oxygen consumption. It is entirely conceivable that the combination of different cardioprotective principles at different time points during reperfusion might provide additive protective effects. In this context, it is of interest that calcium/calmodulin-dependent protein kinase II is necessary for desflurane-induced postconditioning, whereas prolonged postschismic calcium/calmodulin-dependent protein kinase II blockade might attenuate adverse effects of ischemia/reperfusion injury, including remodeling. Thus, it might be reasonable to apply anesthetic postconditioning at the onset of reperfusion and to initiate β blockade later during reperfusion. However, further basic research and clinical studies will be necessary to determine an optimized cardioprotective approach and to identify the possible clinical consequences of these experimental findings.

The rabbits used in this study were between 8 and 12 weeks of age and weighed between 2.5 and 3.0 kg. Although cardioprotection by ischemic and pharmacological preconditioning can be attenuated or lost in senescent hearts, there is some evidence of preserved ischemic postconditioning in the aged myocardium. Thus, the impact of aging on the cardioprotective effects of β blockade, anesthetic postconditioning and their interaction with reactive oxygen species needs to be determined in future studies.

Markus Lange, M.D.,* Matthias L. Riess, M.D., Ph.D., *Klinikum der Bayerischen Julius-Maximilians-Universität, Würzburg, Germany. lange_m@klinik.uni-wuerzburg.de

To the Editor.—Kimberger et al. and the editors are to be commended for attempting to shed light on an important topic: What is the optimal intraoperative fluid and resuscitation target? Many experienced physicians, including us, who provide anesthesia for major intraabdominal surgery have evolved over time from crystalloid-only, “show me the proof” physicians to those being in philosophical agreement with both the author and the editorial writers—goal-directed therapy with colloid is best in intestinal cases. We believe this produces less gut edema without compromising gut or other critical organ perfusion (not to mention reducing the anesthesiologist’s aural discomfort from the oft repeated surgeon lament that the anesthesia team is “drowning” the patient). Indeed, Victor Hugo once said, “All the forces in the world are not so powerful as an idea whose time has come.”

Unfortunately, despite our hope to the contrary, all the forces in the world may have to wait a little longer, because this study does not

References

2. Riess ML. The rocky road from bench to bedside: Beta-blockers and anesthetic postconditioning. ANESTHESIOLOGY 2009; 110:451–2

Achieved for publication June 29, 2009.)