Modified and Newly Designed Right-sided Double-lumen Endobronchial Tubes Are Complementary

To the Editor—We read with great interest the case report1 on the application of a newly designed right-sided, double-lumen endobronchial tube (R-DLT) in patients with a very short right mainstem bronchus. However, in citing our work2 on the improvement of the endobronchial positioning of the R-DLT, Hagihira et al. stated that we modified the design of the bronchial cuff and that these changes seem to offer little improvement. This statement is inconsistent with our published manuscript which demonstrates, on a randomized series of 80 patients, that the modified enlarged area of the lateral orifice (and not the bronchial cuff as stated by Hagihira et al.) improve the success rate of final positioning from 74 to 97% with a P < 0.0109. These two new versions of the R-DLT are not intended to solve the same problem, but the final objective, improvement of the use of R-DLT, is similar.

The reported modification of a right-sided double lumen tube is the object of patent applications 11/950,832 in the United States, 2,610,933 in Canada, and 06761048.5 in Europe, filed by University Laval on behalf of Jean Bussières, M.D.

In Reply—We appreciate the comments by Fishler and Laloe regarding our article.3 Their remarks are important to evaluate the dimensions of the tracheobronchial tree. To choose the double-lumen tube (DLT) size, the diameter of the mainstem bronchus and the diameter of the trachea are important. Usually, the ratio of occipito-frontal diameter and transverse diameter is within 0.9 to 1.1. However, in some patients, its ratio is beyond this range. In such cases, measurement using three-dimensional reconstructed images would be ideal, but it would not always be available. In that case occipito-frontal diameter in computed tomographic images would be the next choice. Brodsky et al.4 reported that the width of the trachea and the width of the left mainstem bronchus were closely correlated. Considering this, selecting the DLT size by the diameter of the trachea would be the third choice.

In our article we discussed the availability of a right-sided DLT. From this point of view, the length rather than the diameter of the right mainstem bronchus was important. As compared with the diameter, the length of right mainstem bronchus could be accurately measured from an x-ray image. The ratio of magnification can be calculated by the width of the endotracheal tube on the x-ray image and real tube width. Thus, our method was adequate for our purpose:

In our routine practice, we carefully examine the computed tomographic image as well as the x-ray image, and then we decide the type and the size of DLT in each patient, considering the side and the type of operation. Careful preoperative image examination is essential for thoracic anesthesia.

We thank Dr. Hagihira for this interesting case report. While this new R-DLT may become a useful tool for thoracic anesthesiologists, we would first encourage them to validate its use with a randomized study.

Jean S. Bussières, M.D., F.R.C.P.C., Jacques Somma, M.D., F.R.C.P.C., B.Eng. University Heart and Lung Institute at Laval Hospital, Quebec City, Quebec, Canada.

References

Accepted for publication January 13, 2009.

Fig. 1. Scheme for the most distal acceptable position (A) and the most proximal acceptable position (B) of a right-sided double-lumen tube, as defined by Benuomof et al.5 The arrow indicates the space between the wall of the bronchial tip and the bronchial wall.