Levosimendan, a New Inotropic and Vasodilator Agent

Wolfgang G. Toller, M.D.,* Christian Stranz, M.D.†

Several clinical studies suggest substantial limitations of currently available positive inotropic substances, including β1-adrenoceptor agonists and phosphodiesterase III inhibitors in the short- and long-term treatment of heart failure. The reasons for these detrimental effects are related to the mechanism of action of these drugs, including increases in intracellular Ca2+ with subsequent increases in myocardial oxygen demand and arrhythmogenesis. Levosimendan, a myofilament Ca2+ sensitizer with inotropic effects, increases myocardial performance without substantial changes in oxygen consumption and with neutral effects on heart rhythm. In addition, levosimendan has vasodilatory effects that are achieved by stimulation of adenosine triphosphate–dependent potassium channels. This action may be of specific interest in the setting of myocardial ischemia. To date, levosimendan is approved in 31 countries worldwide, and more patients with heart failure have participated in randomized controlled trials with levosimendan than with any other intravenous inotropic agent.

IN addition to administration of oxygen, diuretics, vasodilators, and anticoagulants, the support of severely impaired myocardial contractile function with positive inotropic agents represents a mainstay of therapy in critically ill patients. Irrespective of whether used in patients with acute decompensation of chronic heart failure (CHF), contractile dysfunction after myocardial infarction, or stunning after cardiac surgery, these drugs frequently improve contractility and relieve symptoms. Regarding clinical outcome, however, the results of many trials suggest substantial limitations of such drugs in the treatment of myocardial contractile dysfunction.1 With the exception of digoxin, which has neutral effects on overall mortality,2 currently available positive inotropic substances, including β1-adrenoceptor agonists and phosphodiesterase (PDE) III inhibitors, have been found detrimental in the long-term treatment of heart failure because they contribute to the development of malignant ventricular tachyarrhythmias and increase the incidence of sudden cardiac death.3,4 In addition, recent studies also indicate that short-term administration of PDE III inhibitors is associated with a high incidence of treatment-related complications, e.g., atrial fibrillation and hypotension,5 particularly when concomitant ischemia is present as in patients with ischemic cardiomyopathy.6 The reasons for these disappointing findings may be related to the fact that, despite different primary sites of action, all of these drugs eventually enhance myocardial contractility by increasing intracellular levels of cyclic adenosine monophosphate (cAMP) in myocytes, whether generated by an increased rate of synthesis (β1-adrenoceptor agonists) or by a decreased rate of degradation (PDE III inhibitors), which promotes the release of Ca2+ from the sarcoplasmic reticulum (SR) to the cytosol. Augmentation of intracellular Ca2+ subsequently produces a temporary improvement in contractility at the expense of an increased myocardial energy consumption and oxygen demand,7 which finally accelerates myocardial cell death. Furthermore, increased concentrations of cAMP and the subsequent change in intracellular Ca2+ turnover are cardiotoxic and enhance electrophysiologic mechanisms that result in rhythm disturbances.8

Accordingly, considerable research has been devoted to develop new approaches to positive inotropic therapy independent of the potentially deleterious mechanism of augmenting intracellular Ca2+ availability. Theoretically, such approaches should enhance contractile force without increasing myocardial oxygen demand or the risk of cardiac arrhythmias. As the relation of intracellular Ca2+ and corresponding tension of cardiac myofilaments may be impaired during pathophysiological conditions such as ischemia, acidosis, sepsis, or hypothermia, drugs have been developed that modulate this relation without actual alteration of intracellular Ca2+ levels.9 All of these “myofilament Ca2+ sensitizers,” including levosimendan, pimobendan, EMD 57033, ORG 30029, MCI-154, and others, share the ability to enhance contractility by increasing the sensitivity of the myofilaments to calcium although with different potencies, through diverse mechanisms and sites of action, and with varying degrees of parallel PDE inhibitory effects.10 Among these, levosimendan is promising in the management of both

* Associate Professor of Anesthesiology. † Resident.
Acute and chronic left ventricular (LV) failure, because it is a potent Ca\(^{2+}\) sensitizer,\(^9\) has no negative impact on diastolic function,\(^11\) has little potency for additional PDE inhibition at clinically recommended concentrations,\(^12\) has neutral effects on heart rhythm,\(^13\) and has advantageous over dobutamine in long-term survival.\(^14\) Levosimendan was first approved in Sweden in 2000 and is currently in clinical use in approximately 30 countries, predominately in Europe and South America. The drug is in large phase III clinical studies in the United States (REVIVE) and Europe (SURVIVE) and has been granted fast-track status by the Food and Drug Administration. The European Society of Cardiology has adopted its use in the treatment of acute heart failure in 2001\(^15\) and assigned it a class of recommendation IIa (i.e., conflicting evidence with weight in favor of usefulness), level of evidence B (i.e., data derived from a randomized clinical trial) in the treatment of symptomatic low–cardiac output heart failure secondary to cardiac systolic dysfunction without severe hypotension in 2005,\(^16\) which is superior to catecholamines or PDE III inhibitors for this indication.

This review compares the different actions of standard positive inotropic drugs and Ca\(^{2+}\) sensitzers. It also summarizes the current experimental and clinical knowledge of the use of levosimendan and gives practical recommendations with a special focus on the perioperative setting.

Mechanism of Myocardial Excitation–Contraction Coupling

When the myocyte sarcolemma depolarizes, extracellular Ca\(^{2+}\) enters the cell, primarily through sarcolemmal voltage-gated L-type Ca\(^{2+}\) channels. This action on its own is insufficient to produce contraction of the myofilaments but triggers the (passive) release of larger amounts of Ca\(^{2+}\) from the SR to the cytosol ("calcium-induced Ca\(^{2+}\) release").\(^17\) which subsequently initiates contraction. Contraction is performed by interaction of a variety of structural and regulatory proteins, including myosin, actin, tropomyosin, and the troponin complex (TnC, TnI, TnT). When cytosolic Ca\(^{2+}\) is low during relaxation (approximately 10\(^{-7}\) M), tropomyosin inhibits interaction between actin and myosin. Contraction is initiated when cytosolic Ca\(^{2+}\) increases (approximately 10\(^{-5}\) M), binds to TnC, and causes a conformational change of this protein. Subsequent activation of TnT removes tropomyosin and TnI from the adenosine triphosphate (ATP) reactive site, thus allowing actin to interact with myosin, a process known as cross-bridging. As long as Ca\(^{2+}\) is bound to TnC, this energy-dependent process is repeatedly performed ("cross-bridge cycling") to generate contractile force. During basal states, Ca\(^{2+}\) does not saturate the myofilaments, i.e., approximately 25% of full activation is achieved. This reserve of activation can be mobilized by increasing either the amount of Ca\(^{2+}\) available for binding or the sensitivity of myofilaments to Ca\(^{2+}\). Relaxation is initiated both by phosphorylation of TnI and rapid removal of cytosolic Ca\(^{2+}\) predominately by reuptake into the SR through the (energy-requiring) sarcoplasmic endoplasmic reticulum calcium adenosine triphosphatase isoform 2 (SERCA2). With each contraction-relaxation cycle, there is no net gain or loss of cellular Ca\(^{2+}\).

Importantly, the response of myofilaments to a specific intracellular concentration of Ca\(^{2+}\) may be attenuated (i.e., "desensitization") by a variety of pathophysiologic conditions, including acidosis,\(^18\) hypothermia,\(^19,20\) increased inorganic phosphate,\(^21\) sepsis,\(^22\) ischemia–reperfusion injury,\(^23\) and myocardial stunning,\(^24\) but also by pharmacologic \(\beta\)-adrenergic stimulation\(^25–27\) or the presence of CHF with increased neurohormonal activation. Conversely, the sensitivity of contractile proteins to Ca\(^{2+}\) may increase, e.g., by \(\alpha\)-adrenergic receptor stimulation\(^27\) or by administration of myofilament calcium sensitzers.\(^10\)

Mechanism of Action of Standard Inotropic Drugs

Drugs currently used to achieve positive inotropic effects in the perioperative setting include catecholamines, e.g., dobutamine, and PDE III inhibitors, e.g., milrinone. Although these substances have different sites of action, they ultimately initiate a cascade of events that stimulate contractility by increasing intracellular Ca\(^{2+}\) concentration (fig. 1). Binding of catecholamines to \(\beta\)-adrenergic receptors on the surface of myocytes activates adenylate cyclase, which generates cAMP from ATP. cAMP activates protein kinase A, which subsequently phosphorylates (i.e., attaches a phosphate group to) intracellular targets, including the voltage-gated L-type Ca\(^{2+}\) channel, phospholamban, and TnI. Phosphorylation of sarcolemmal voltage-gated L-type Ca\(^{2+}\) channels enhances Ca\(^{2+}\) entry into the cytosol. The increased activity of these channels further increases "trigger calcium," leading to greater activation of the calcium release channel (RyR2) in the SR and subsequent contraction (i.e., positive inotropic action of catecholamines and PDE III inhibitors). In contrast, phosphorylation of phospholamban activates SERCA2. This action increases the rate of Ca\(^{2+}\) transport from the cytosol back into the SR during diastole and is therefore responsible for the positive lusitropic actions of catecholamines and PDE III inhibitors. Although this lusitropic action enhances relaxation, it is also crucial to ensure sufficient Ca\(^{2+}\) availability from the SR for the next cellular depolarization and contributes to the overall gain in cardiac excitation–contraction coupling that adrenergic stimulation medi-
digoxin decreases atrioventricular nodal conduction, it is, along with amiodarone, however, useful in the control of ventricular rate during refractory atrial fibrillation.31

Mechanism of Action of Levosimendan

Positive Inotropic Effects

Myofilament Ca$^{2+}$ Sensitization. Levosimendan enhances myocardial contractility by binding to the N-terminal lobe of cardiac TnC with a high affinity32–34 and stabilizing the Ca$^{2+}$-bound conformation of this regulatory protein.52 Therefore, systolic interaction of actin-myosin filaments is prolonged without alteration of the rate of cross-bridge cycling. Other myofilament Ca$^{2+}$-sensitizers are bound to the TnC-Ca$^{2+}$ complex during both systole and diastole with improvement of systolic but possible impairment of diastolic function35 due to facilitation of cross-bridging at diastolic Ca$^{2+}$ levels, whereas binding of levosimendan to TnC is dependent on the cytosolic Ca$^{2+}$ concentration, i.e., increases during systole but is relatively unchanged during diastole, when Ca$^{2+}$ levels decrease.36 This mechanism may be the reason for the parallel enhancement of myocardial contractility and improvement of LV diastolic function without promoting arrhythmogenesis or alteration of myocardial oxygen demand in experimental36–38 and clinical11,39 studies.

Phosphodiesterase III Inhibition. In addition to myofilament Ca$^{2+}$ sensitization, levosimendan inhibits cardiac PDE, predominately PDE III,40 in muscle strips from human hearts41 and various animal models.12,40,42 This effect is observed predominately at higher concentrations (> 0.3 μM),12,42 but is not seen (0.03 μM) or is less pronounced (0.1–0.3 μM) at concentrations reflecting the clinically recommended therapeutic range of 0.03–0.3 μM (i.e., 10–100 ng/ml).43,44 Therefore, at concentrations of 0.03–0.1 μM, levosimendan does not alter heart rate, cAMP levels, myocardial relaxation,12 and cytosolic Ca$^{2+}$ as assessed by aequorin light transients.37,41 although it significantly increases myocardial contractility in guinea pig hearts12 and shifts the graph of the relation between Ca$^{2+}$ and contractile force to the left.37 These findings indicate that levosimendan mainly acts as a Ca$^{2+}$ sensitizer at concentrations of 0.03–0.1 μM. Although 0.1–0.3 μM levosimendan variably alters myocardial cAMP levels, heart rate,34 P incorporation into phospholamban,12 and aequorin light transients41 concentrations exceeding 0.3 μM consistently increase heart rate, contraction (+dP/dt) and relaxation (−dP/dt) as well as partial phosphorylation of phospholamban12 and aequorin light transients.41 These findings suggest a contributing role of PDE inhibition at concentrations of levosimendan exceeding 0.3 μM.

Important experimental and clinical differences between levosimendan and classic PDE inhibitors (e.g.,
milrinone), however, exist. First, milrinone has no Ca\(^{2+}\) sensitizing effect,\(^{46}\) but in contrast decreases the sensitivity of myofilaments to Ca\(^{2+}\) through cAMP-dependent phosphorylation of TnI, whereas levosimendan has this action.\(^{12,2}\) Second, milrinone consistently exerts positive inotropic effects in parallel with an increase in aequorin light emission (indicating influence on Ca\(^{2+}\) transients),\(^{31}\) whereas levosimendan at low concentrations does not have this effect despite production of positive inotropic effects, suggesting that levosimendan is more potent as a Ca\(^{2+}\) sensitizer than as an inhibitor of PDE.\(^{12,47}\) Third, metabolism of levosimendan produces a long-lasting active metabolite, OR-1896,\(^{48}\) which has similar Ca\(^{2+}\) sensitizing properties like the parent compound\(^{49}\) but a significantly lower potential to inhibit PDE III (40-fold less potent, 3-fold less selective).\(^{40}\) Because levosimendan has a relatively short elimination half-life and the infusion is usually discontinued after 24 h, the sustained positive inotropic effects observed thereafter\(^{50}\) suggest an important role of Ca\(^{2+}\) sensitization of this metabolite. Fourth, in clinical practice, levosimendan does not increase the incidence of arrhythmias,\(^{14,51}\) whereas milrinone does.\(^{4–6}\)

Vasodilation

Levosimendan produces vasodilation in several vascular sites including coronary,\(^{52–54}\) pulmonary,\(^{55}\) renal,\(^{56}\) splanchnic,\(^{56}\) cerebral,\(^{56}\) and systemic\(^{57,58}\) arteries as well as saphenous,\(^{59}\) portal,\(^{60}\) and systemic\(^{57,58}\) veins. The underlying mechanism of vasodilation has been extensively investigated\(^{54,55}\) but has not yet been entirely clarified. Recent evidence proposes involvement of several systems or pathways in the vasodilating effects of levosimendan (fig. 2). An important mechanism in vascular smooth muscle of systemic, coronary,\(^{53,61}\) and pulmonary\(^{55}\) arteries is opening of potassium channels, including ATP-sensitive K\(^+\) (K\(_{ATP}\)) channels in small resistance vessels and Ca\(^{2+}\)-activated K\(^+\) and voltage-dependent K\(^+\) channels in large conductance vessels. These actions hyperpolarize the membrane, thereby inhibiting inward L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)), as well as promoting the forward mode (FM) of Na\(^+\)–Ca\(^{2+}\) exchanger (NCX), \(i.e.,\) three Na\(^+\) in, one Ca\(^{2+}\) out. The resultant decrease in intracellular Ca\(^{2+}\) (Ca\(^{2+}\)\(_i\)) would produce vasorelaxation. Levosimendan also may decrease the Ca\(^{2+}\) sensitivity of the contractile proteins directly and/or indirectly through the hyperpolarization. The plus signs indicate stimulation, and the minus signs indicate inhibition. VSM = vascular smooth muscle. Modified from figure 1, with kind permission of Springer Science and Business Media, from Yokoshiki and Sperelakis.\(^{53}\)

Fig. 2. Proposed vasodilating mechanisms for levosimendan. Levosimendan stimulates the adenosine triphosphate (ATP)–sensitive K\(^+\) (K\(_{ATP}\)) channel in small resistance vessels and the Ca\(^{2+}\)-activated K\(^+\) (K\(_{Ca}\)) and voltage-dependent K\(^+\) (K\(_{v}\)) channels in large conductance vessels. These actions hyperpolarize the membrane, thereby inhibiting inward L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)), as well as promoting the forward mode (FM) of Na\(^+\)–Ca\(^{2+}\) exchanger (NCX), \(i.e.,\) three Na\(^+\) in, one Ca\(^{2+}\) out. The resultant decrease in intracellular Ca\(^{2+}\) (Ca\(^{2+}\)\(_i\)) would produce vasorelaxation. Levosimendan also may decrease the Ca\(^{2+}\) sensitivity of the contractile proteins directly and/or indirectly through the hyperpolarization. The plus signs indicate stimulation, and the minus signs indicate inhibition. VSM = vascular smooth muscle.

smooth muscle.\(^{65}\) This effect, however, predominates at excessive doses (1 mm) of levosimendan,\(^{54}\) whereas at 3 μm, vasorelaxation is different from milrinone\(^{64}\) and not affected by inhibition of protein kinase A at concentrations of 0.01–1 μM.\(^{47}\) Although the importance and relative contribution of each of these mechanisms of vasorelaxation is unclear and may be different in various vessels and dependent on the dose of levosimendan, an important role of K\(^+\) channel opening is obvious, whereas the role of PDE inhibition remains to be defined.

Hemodynamic Effects of Levosimendan

Levosimendan consistently increases cardiac output in experimental and clinical studies. Possible theoretical mechanisms of this action are modification of heart rate, improvement of cardiac performance, and vasodilation.

Heart Rate

Levosimendan dose-dependently (\(\geq 0.1\) μM) increased heart rate in several animal experiments,\(^{12,38,42}\) healthy volunteers,\(^{66}\) and patients with New York Heart Association (NYHA) functional class II–IV heart failure of ischemic etiology.\(^{45}\) The mechanism of the occasionally observed early levosimendan-induced increase in heart rate is unknown but may be produced by compensatory vasodilation-induced activation of baroreceptor reflexes,\(^{67}\) particularly after administration of a bolus. Conversely, studies demonstrate an initial neutral effect on heart rate after abandonment of a bolus,\(^{68}\) low bolus
concentrations (3–12 μg/kg), \(^{51,66,69}\) or oral administration of levosimendan. \(^{70}\) In contrast, persistence of an increased heart rate after discontinuation of a 24-h infusion of levosimendan \(^{48,50}\) or after extended infusions for 7 days \(^{71}\) suggests an important role of OR-1896, a metabolite of levosimendan, \(^{48}\) which continues to accumulate after withdrawal of levosimendan. \(^{50}\) In clinical practice, treatment of patients with normal or reduced ejection fraction but within the recommended dosages (6- to 24-μg/kg bolus over 10-min, followed by an infusion of 0.05–0.2 μg · kg⁻¹ · min⁻¹) \(^{35}\) rarely produces positive chronotropy exceeding more than 10% from baseline \(^{45}\) and is generally less marked in patients with severe heart failure. Accordingly, neutral or insignificant effects on heart rate were observed in patients with CHF, \(^{45}\) cardiogenic shock, \(^{72}\) and severe decompensated heart failure \(^{14,58,73}\) and after myocardial infarction, \(^{51}\) but also in the perioperative period in patients undergoing surgical revascularization with normal \(^{39}\) or compromised \(^{74}\) ventricular function. In contrast, administration of high doses of levosimendan (36-μg/kg bolus and infusion of 0.3 μg · kg⁻¹ · min⁻¹ over 6 h) in patients with a normal ventricular function increased heart rate after cardiopulmonary bypass, particularly after the bolus (+24 beats/min) and during the first hour of infusion. \(^{75}\) Therefore, changes in heart rate are obviously a function of dosage, intravascular volume status, and preexisting compromise of myocardial contractile function. \(^{76}\) Taken together, modification of heart rate under clinical conditions and within the recommended doses \(^{15}\) is unlikely to be an important mechanism of the increase in cardiac output produced by levosimendan.

Cardiac Performance

Administration of levosimendan enhances cardiac performance in vitro, \(^{41}\) in vivo, \(^{76}\) and in clinical studies. \(^{14,58}\) For example, in patients with low-output heart failure, a 24-h administration of levosimendan (0.1–0.2 μg · kg⁻¹ · min⁻¹) increased cardiac output by 1.09 l/min and decreased pulmonary capillary wedge pressure (PCWP) by 7 mmHg, whereas dobutamine (5–10 μg · kg⁻¹ · min⁻¹) changed these parameters by 0.80 l/min and 3 mmHg, respectively (fig. 3). \(^{14}\) These effects generally occur in a dose-dependent manner and are characterized by an increase in LV stroke volume and cardiac index in patients with severely compromised ventricular function. \(^{56}\) In addition, improved cardiac performance has also been suggested by a significant decrease of circulating levels of amino terminal pro B-type natriuretic peptide after a 24-h infusion of levosimendan (0.1 μg · kg⁻¹ · min⁻¹) in patients with decompensated CHF and a mean LV ejection fraction of approximately 25%. \(^{77}\) Interestingly, the decrease of this neurohormonal marker was particularly pronounced 48 h after discontinuation of levosimendan treatment.

![Change in cardiac output](Image)

Fig. 3. Comparison of hemodynamic effects of levosimendan and dobutamine. Changes in cardiac output and pulmonary capillary wedge pressure were recorded from baseline to 30 h in patients with low-output heart failure. Levosimendan (0.1–0.2 μg · kg⁻¹ · min⁻¹) or dobutamine (5–10 μg · kg⁻¹ · min⁻¹) were infused for 24 h and then discontinued. At 24 h, levosimendan and dobutamine produced median changes in cardiac output of 1.09 and 0.80 l/min, respectively (P = 0.048). In addition, administration of these drugs produced median decreases of pulmonary capillary wedge pressures of 7 and 3 mmHg, respectively (P = 0.003). Error bars indicate SEMs. Reprinted with permission from Elsevier, from Follath et al. \(^{14}\)

Although Ca²⁺ sensitizers carry a potential risk of worsening diastolic function, \(^{55}\) levosimendan decreased the time constant of isovolumic relaxation (τ) in various experimental \(^{58,76,78}\) and clinical \(^{11}\) settings, indicating improvement rather than deterioration of diastolic function. In addition to these beneficial effects at rest, levosimendan treatment also improved LV systolic and diastolic performance during exercise in dogs with pacing-induced CHF. \(^{79}\) These positive lusitropic effects may be related to the Ca²⁺ dependence of Ca²⁺-bound sensitization of cardiac TnC, i.e., the contractile apparatus is sensitized in systole (when Ca²⁺ is high) but not in diastole (when Ca²⁺ is low) or alternatively due to PDE III inhibition.

Vasodilation

Vasodilation observed with administration of levosimendan is followed by numerous consequences. Pulmonary vasodilation decreases right heart filling pressures, \(^{58}\) which, in context with positive inotropic
effects, could explain increases right ventricular contrac-
tility and performance observed with administration of
levosimendan. Systemic vasodilation decreases left
heart filling pressures, enhances LV-arterial coupling57
and increases blood flow to various tissues, including
myocardium, gastric mucosa, renal medulla, small in-
testine, and liver. In the splanchic area, levosimendan
is superior to milrinone and dobutamine in selectively
increasing microvascular gastric mucosal oxygenation82,83
and increases portal venous blood flow and oxygen
delivery in experimental septic shock. Clinical
consequences of levosimendan-induced vasodilation
must be seen in context with the parallel improvement
of cardiac performance. Although vasodilation may de-
crease mean arterial blood pressure, which compro-
mises, for example, renal perfusion, the parallel increase
in cardiac output frequently more than compensates this
handicap. For example, renal function was improved
after a 24-h infusion of levosimendan (0.1–0.2 \(\mu g \cdot kg^{-1} \cdot min^{-1} \)) in patients with low-output heart failure as
demonstrated by decreases of serum creatinine levels
(\(-9 \mu mol\)) compared with infusions of dobutamine (5–10 \(\mu g \cdot kg^{-1} \cdot min^{-1} \)).14

Anti-ischemic Effects of Levosimendan

Particularly during ischemia and reperfusion, adminis-
tration of catecholamines and PDE III inhibitors produce
detrimental side effects, e.g., atrial and ventricular tachy-
arrhythmias.5,6,85,86 In this setting, availability of positive
inotropic drugs with a neutral profile on cardiac rhythm
and anti-ischemic effects would confer benefits.

\[K_{ATP} \text{ Channel Opening} \]

Levosimendan opens both mitochondrial87,88 and sar-
colemmal89,90 \(K_{ATP} \) channels. Although the definite rel-
ance of these actions is unknown, opening of mito-
chondrial \(K_{ATP} \) channel has repeatedly been implicated in
mediation of anti-ischemic actions.91 Prevention of
mitochondrial Ca\(^{2+}\) overload, restoration and stabiliza-
tion of mitochondrial membrane potential, preservation
of high-energy phosphates, and regulation of mitochon-
drial matrix volume have been proposed as underlying
mechanisms.92 Interestingly, the positive inotrope levo-
simendan protected ischemic myocardium,93,95 decreased
myocardial infarct size when administered before
and during myocardial ischemia in dogs,61 and improved
survival compared with placebo in patients with LV failure
complicating acute myocardial infarction.51

Opening of sarcolemmal \(K_{ATP} \) channels, however, has
been implicated in both mediating cardioprotective ef-
fects94 and exerting a theoretical proarrhythmic poten-
tial.95 This detrimental action on heart rhythm is pro-
duced by the large outward depolarizing K\(^+\) current that
sarcolemmal \(K_{ATP} \) channel opening initiates. Subsequent
hyperpolarization of resting membrane potential and
shortening of action potential duration decreases the
effective refractory period96 of the tissue and thereby
increases the susceptibility to reentrant arrhythmias. Al-
though levosimendan indeed hyperpolarized membrane
potential,97 shortened action potential duration in iso-
lated cells,90 and slightly shortened effective refractory
period in patients,97 experimental and clinical studies so
far have demonstrated a neutral effect of this drug on
heart rhythm rather than proarrhythmic potential.15,85,97

Effects of Levosimendan during Ischemia, Stunning,
and Myocardial Infarction

Because levosimendan does not increase myocardial
oxygen demand81 and possibly exerts anti-ischemic ef-
effects,61,93,98 efficacy and safety of this substance have
been intensively tested before, during, and after ischemi-
a–reperfusion injury in experimental and clinical studies.
Levosimendan did not promote ischemia–reperfusion ar-
rhythmias compared with dobutamine in guinea pig
hearts85 and in patients with stable moderate-to-severe
ischemic cardiomyopathy when used in recommended
clinical concentrations (6- to 24-\(\mu g/kg\) bolus over 10
min, followed by an infusion of 0.05–0.2 \(\mu g \cdot kg^{-1} \cdot
min^{-1} \)) in a double-blinded, placebo-controlled, random-
ized, multicenter study.45 Furthermore, the incidence of
arrhythmias was not increased when levosimendan was
compared with placebo in patients with acute myocar-
dial infarction51 or administered perioperatively in pa-
ients with coronary artery bypass grafting.75 Although
obviously having a neutral profile on heart rhythm, levo-
simendan consistently improved contractile function in
the setting of global ischemia–reperfusion injury in ex-
perimenal85,93,99,100 and clinical studies.11,51,75

In contrast, two experimental studies using regional
myocardial ischemia in pigs demonstrated detrimental
effects of levosimendan during ischemia, i.e., increase in
the rate of ventricular arrhythmias101 and worsening of
the myocardial contractile function in the ischemic ar-
a.102 An increased frequency of ventricular arrhythmias
was also noted at levosimendan doses of 0.6 \(\mu g \cdot kg^{-1} \cdot
min^{-1} \) (i.e., 3 times higher than upper recommended
dose) in patients with stable ischemic cardiomyopa-
thy.45 The reasons for these findings may be related to a
decline in coronary perfusion pressure, redistribution of
coronary blood flow producing coronary steal, and in-
crease in myocardial oxygen consumption due to PDE III
inhibition.103 Therefore, as with any other positive ino-
tropic drug, caution is advised with the use of levo-
simendan, especially in high doses, in patients who have
ongoing myocardial ischemia.

Efficacy and safety of levosimendan have been demon-
strated during states of myocardial stunning in experi-
mental settings104,105 and in patients with acute coro-
nary syndrome undergoing angioplasty in a randomized,
double-blinded, placebo-controlled trial.11
The protective actions were blocked with glibenclamide without alteration of the hemodynamic effects of levosimendan.

Pharmacokinetics, Metabolism, and Dosage

The pharmacologic profile of levosimendan and its metabolites in patients with normal and compromised myocardial contractile function has been reviewed extensively elsewhere. Important pharmacokinetic data of levosimendan in healthy volunteers and patients with congestive heart failure are shown in table 1.

Pharmacokinetics

Although during CHF pharmacokinetics of many drugs may be altered because of reduction of central volume, fluid retention, and reduced blood flow to various organs, including liver and kidneys, pharmacokinetic parameters of intravenous levosimendan are comparable when obtained in healthy volunteers and patients with mild or NYHA functional class III or IV heart failure. Levosimendan has a β elimination half-life, volume of distribution, and total body clearance of approximately 1 h, 20 l, and 300 ml/min, respectively. These parameters remain constant independent of the duration of infusion. Because levosimendan at a pH of 7.4 is present primarily in the ionized form (pKa 6.26) and is 98% bound to plasma proteins, only trace amounts of the unchanged drug are found in erythrocytes and urine.

Metabolism

The extensive metabolism of levosimendan yields biologically active metabolites (e.g., OR-1855, OR-1896) that are eliminated in urine and feces. The clinically most relevant metabolite, OR-1896, also has Ca$^{2+}$-sensitizing and weak PDE III–inhibiting properties and exerts positive inotropic effects similar to the parent compound. OR-1896, however, has an elimination half-life of 80–96 h, reaches maximum plasma concentrations approximately 2 days after withdrawal of levosimendan in patients with chronic heart failure. Concentrations of levosimendan decline quickly after discontinuation of the infusion, whereas both metabolites reach maximum plasma concentrations approximately 2 days after withdrawal of levosimendan. Error bars indicate SEMs. Reprinted with permission from Dustri-Verlag, Inc., from Kivikko et al. The effects of continuous infusions exceeding 24 h on plasma levels of levosimendan and its circulating metabolites and possible desired and undesired side effects, however, have recently been repeatedly investigated. Pharmacokinetics of levosimendan were similar after single-dose administration and continuous infusion of 7 days, whereas accumulation of OR-1896 was confirmed. An extended infusion of 0.1 μg · kg$^{-1}$ · min$^{-1}$ over 7 days decreased systolic blood pressure (11 ± 14 mmHg) and substantially increased heart rate (26 ± 19 beats/min) on day 7 but was nevertheless well tolerated in patients.

Table 1. Pharmacokinetics of Levosimendan in Healthy Volunteers and Patients with Congestive Heart Failure

<table>
<thead>
<tr>
<th></th>
<th>Healthy Volunteers</th>
<th>Patients with CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unchanged</td>
<td>Total Drug</td>
</tr>
<tr>
<td>$t_{1/2}$, h</td>
<td>0.20 ± 0.08</td>
<td>0.31 ± 0.08</td>
</tr>
<tr>
<td>$t_{1/2}$, hr</td>
<td>0.96 ± 0.16</td>
<td>1.03 ± 0.11</td>
</tr>
<tr>
<td>$t_{1/2}$, h</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cl, ml/min</td>
<td>359 ± 69</td>
<td>296 ± 61</td>
</tr>
<tr>
<td>V_c, l</td>
<td>12.3 ± 3.3</td>
<td>13.0 ± 2.7</td>
</tr>
<tr>
<td>V_s, l</td>
<td>21.9 ± 5.9</td>
<td>19.5 ± 4.5</td>
</tr>
<tr>
<td>V_{area}, l</td>
<td>30.3 ± 9.1</td>
<td>26.4 ± 5.9</td>
</tr>
</tbody>
</table>

Data are mean ± SD; n = 15 for both groups.

CHF = congestive heart failure; $t_{1/2}$ = total clearance; $t_{1/2}$ = $t_{1/2}$, $t_{1/2}$, and $t_{1/2}$ = $t_{1/2}$, $t_{1/2}$, and $t_{1/2}$; V_{area} = volume of distribution based on area under the curve; V_c = central volume of distribution; V_s = volume of distribution at steady state.

Reprinted with permission from Lippincott Williams & Wilkins, Sandell et al. 108

Fig. 4. Plasma concentrations of levosimendan and its metabolites, OR-1855 and OR-1896, during and after a 24-h infusion of levosimendan in patients with chronic heart failure. Concentrations of levosimendan decline quickly after discontinuation of the infusion, whereas both metabolites reach maximum plasma concentrations approximately 2 days after withdrawal of levosimendan.

Anesthesiology, V 104, No 3, Mar 2006

W. G. TOLLER AND C. STRANZ

Copyright © by the American Society of Anesthesiologists. Unauthorized reproduction of this article is prohibited.
with NYHA functional class III or IV symptoms of heart failure and ejection fractions below 40%.71

Dosage
Administration of a 6- to 24-μg/kg bolus dose of levosimendan followed by a 24-h infusion of 0.05–0.2 μg · kg⁻¹ · min⁻¹ produces plasma concentrations of 10–100 ng/ml (0.035–0.35 μM) in patients with NYHA functional class II–IV heart failure41 and can be considered as the therapeutic range to obtain favorable hemodynamic effects.45

Safety Issues
Levosimendan generally is well tolerated by patients with moderate or severe heart failure, with an overall frequency of adverse events of 17–29%, which is similar to that of placebo (17–20%).45,51,58

Interaction with Concomitant Heart Failure Drugs
In most clinical trials that evaluated the effects of levosimendan in heart failure, patients were taking concomitant routine heart failure drugs.45,51,58 For example, in a randomized multicenter trial, 89% of patients receiving levosimendan were using angiotensin-convertase enzyme (ACE) inhibitors, 95% were using diuretics, 76% were using digoxin, and 37% were using β blockers.14 Although additive responses particularly regarding vasodilation (i.e., ACE inhibitors and levosimendan) and heart rate (i.e., nitrates or β blockers and levosimendan) would be expected, clinical studies so far have not reported serious interactions when levosimendan was used within the recommended dose range and in patients with myocardial contractile impairment.

A subgroup analysis evaluating the concomitant effect of β blockade on hemodynamics revealed no reduction of the effects of levosimendan on cardiac output and PCWP, whereas the actions of dobutamine were attenuated.14 This finding is in agreement with previous preclinical and clinical data demonstrating beneficial or neutral effects of parallel atenolol47 or carvedilol111 administration on the inotropic effects of levosimendan.

In another double-blinded, randomized, multicenter trial, the majority of patients received ACE inhibitors (5–20 mg enalapril), nitrates, and diuretics when various dose regimes of levosimendan were compared with dobutamine or placebo.45 Although no direct comparisons were made between patients with or without these drugs, treatment with levosimendan within the recommended doses (0.05–0.2 μg · kg⁻¹ · min⁻¹) in general was associated with only minor decreases in mean arterial blood pressure (3.5 ± 2.8 mmHg) after 24 h of treatment. Similarly, 50 mg captopril did not further decrease systolic or diastolic blood pressures when administered concomitantly with levosimendan in patients with NYHA functional class II or III after previous myocardial infarction.112 Although no major additive hemodynamic effects of the combination of levosimendan and isosorbide-5-mononitrate compared with each drug alone were observed in healthy subjects at rest, an exaggerated circulatory response during an orthostatic test (i.e., increase in heart rate by 40 beats/min; inability to stand upright) was observed with this combination of drugs.113 In contrast, concomitant nitrate therapy in patients with acute myocardial infarction produced only marginal decreases in systolic blood pressure (5 mmHg) and minor increases in heart rate (4 beats/min).51 Similarly, 5 mg felodipine, a dihydropyridine calcium antagonist, combined with oral levosimendan did not further increase heart rate and had no effect on blood pressure.114 No exaggerated or attenuated hemodynamic side effects of levosimendan were further reported in the presence of furosemide (10 mg/h) and amiodarone.73

Hemodynamic Side Effects
Dose-dependent increases in heart rate and decreases in mean arterial blood pressure and total peripheral and pulmonary vascular resistance45 may cause a variety of unfavorable hemodynamic effects, including myocardial ischemia, hypotension, cardiac arrhythmias, and hypoxemia. Treatment within the recommended doses of levosimendan, however, does not induce myocardial ischemia45,51 and symptomatic or asymptomatic hypotension (> 10-mmHg pressure decrease).51 Levosimendan-induced vasodilation may, however, be responsible for the increased frequency of headache, dizziness, and nausea observed in several clinical trials.14,45,113

Electrophysiologic Side Effects
Short-term intravenous administration (18-μg/kg bolus followed by 0.4 μg · kg⁻¹ · min⁻¹) increases heart rate, shortens sinus node cycle duration and sinus node recovery time, and decreases atrioventricular nodal conduction interval and refractory periods.115 These actions indicate that levosimendan enhances impulse formation and conduction, accelerates the recovery of excitability, and therefore may also increase the ventricular response rate during atrial fibrillation. Several clinical studies including patients with atrial fibrillation, however, have been performed,45,48,51,71 and so far, no adverse effects related to this rhythm disorder have been reported.

Levosimendan may prolong the rate-corrected QT interval (QTc), depending on dose, duration of administration, patient profile, and mode of calculation. When used in recommended doses (12 μg/kg over 10 min followed by an infusion of 0.05–0.2 μg · kg⁻¹ · min⁻¹), the QTc interval remained unaffected.45 Single-bolus injections of 6.5 and 25 μg/kg without subsequent continuous infusion in healthy men produced QTc prolongations as assessed by the Bazett equation of +6 ms and +21 ms,
respectively. In contrast, administration of bolus doses of 24 and 36 μg/kg followed by continuous infusions of 0.4 and 0.6 μg · kg⁻¹ · min⁻¹ prolonged QTc duration by 15 ± 20 and 45 ± 10 ms in patients with NYHA functional class II–IV heart failure. Continuous infusions of levosimendan in doses of 0.05–0.1 μg · kg⁻¹ · min⁻¹ but over 7 days increased mean QTc values by 38 ± 42 and 52 ± 40 ms.71

The impact of this proarrhythmic potential of levosimendan must be weighed against possible arrhythmogenic actions due to the lack of cytosolic Ca²⁺ accumulation, maintenance of diastolic coronary blood flow, and neutral effect on myocardial oxygen consumption. To date, there is no evidence of an increase in the development of new supraventricular or ventricular tachyarrhythmias, including torsade de pointes, in healthy volunteers and patients with severe heart failure, suggesting little potential for the drug to provoke life-threatening proarrhythmic reactions.13

Other Side Effects
Serum potassium levels,45 erythrocyte count, and hemoglobin and hematocrit values may slightly decrease after prolonged levosimendan infusion,71 suggesting a routine control and correction of these parameters in clinical practice.

Clinical Trials with Possible Indications for Levosimendan
Currently, administration of levosimendan is approved for short-term treatment of acute decompensated CHF when conventional therapy with diuretics, ACE inhibitors, and digitalis is insufficient and inotropes are required. In addition, because of its interesting pharmacologic profile, several other possible indications for levosimendan have recently been explored, and the encouraging results of these trials may place levosimendan as a valuable expansion or replacement of standard therapy in the future.

Acute Decompensation of CHF
The LIDO study, a randomized, double-blinded, multicenter trial, compared the effects of levosimendan with dobutamine in 203 patients with acute decompensated low-output heart failure.14 These patients had an LV ejection fraction of less than 35%, a cardiac index of less than 2.5 l · min⁻¹ · m⁻², and a PCWP 15 mmHg or greater on the basis of deterioration of severe CHF, heart failure after cardiac surgery, or acute heart failure related to a cardiac or noncardiac disorder of recent onset. A bolus of levosimendan of 24 μg/kg was infused over 10 min, followed by a continuous infusion of 0.1 μg · kg⁻¹ · min⁻¹ for 24 h. Dobutamine was infused for 24 h at an initial dose of 5 μg · kg⁻¹ · min⁻¹ without a bolus. The infusion rate of each drug was doubled (i.e., 0.2 μg · kg⁻¹ · min⁻¹ levosimendan and 10 μg · kg⁻¹ · min⁻¹ dobutamine) if the response was inadequate at 2 h. The primary endpoint was the proportion of patients with hemodynamic improvement (i.e., increase of cardiac output of 30% or more and decrease of PCWP of 25% or more) at 24 h. All-cause mortality was assessed prospectively at 31 days and retrospectively at 180 days after randomization. Levosimendan treatment was superior to dobutamine in increasing cardiac output and decreasing PCWP (fig. 3), and a significantly greater proportion of patients in the levosimendan group achieved the primary endpoint compared with the dobutamine group (28% vs. 15%; P = 0.022). Although overall frequency of adverse events was similar, headache tended to be associated more frequently with levosimendan, whereas rhythm disorders and myocardial ischemia were more common with dobutamine. Administration of levosimendan was associated with both a significantly lower 31-day (8% vs. 17%; P = 0.049) and 180-day (26% vs. 38%; P = 0.029) mortality. Reprinted with permission from Elsevier, from Follath et al.14

![Graph showing Kaplan-Meier estimates of risk of death during 180 days](image)

Fig. 5. Kaplan-Meier estimates of risk of death during 180 days after a 24-h infusion of levosimendan (0.1–0.2 μg · kg⁻¹ · min⁻¹) or dobutamine (5–10 μg · kg⁻¹ · min⁻¹) in patients with low-output heart failure. Administration of levosimendan was associated with both a significantly lower 31-day (8% vs. 17%; P = 0.049) and 180-day (26% vs. 38%; P = 0.029) mortality. In these patients with NYHA func-
tional class III or IV symptoms of heart failure and ejection fractions of 30% or less, levosimendan therapy was initiated with a bolus dose of 6 μg/kg, followed by a continuous infusion of 0.1 μg · kg⁻¹ · min⁻¹. At hourly intervals, a repeat bolus of 6 μg/kg was given, and the infusion rate was up-titrated by increments of 0.1 μg · kg⁻¹ · min⁻¹ until a maximum rate of 0.4 μg · kg⁻¹ · min⁻¹ was achieved or a dose-limiting event (i.e., heart rate > 130 beats/min or increase in heart rate of > 15 beats/min, symptomatic hypotension or a decrease in systolic blood pressure to < 75 mmHg, decrease in PCWP to ≤ 10 mmHg) occurred. The primary endpoint was the proportion of patients with an increase in stroke volume or a decrease in PCWP of 25% or more at 6 h. Levosimendan dose-dependently increased LV stroke volume (maximum 28% with the highest dose), cardiac index (maximum 39%), and heart rate (maximum 8%) and decreased PCWP (maximum 6 ± 1 mmHg) when compared with placebo.

Inotropic Support during and after Myocardial Ischemia

Safety, efficacy, and effects on mortality of various doses of levosimendan were investigated in the RUSSLAN study, when this drug or placebo was administered in 504 patients with LV failure complicating acute myocardial infarction in a randomized, double-blinded, multicenter trial. In this investigation, four different dosing regimens of levosimendan were tested (6- to 24-μg/kg bolus infused over a period of 10 min, followed by 6 h infusions of 0.1-0.4 μg · kg⁻¹ · min⁻¹). At the time of levosimendan administration, most patients were using nitrates and diuretics, approximately 40% were using ACE inhibitors or β blockers, and 17% had received thrombolyis. None of the patients had received percutaneous transluminal coronary angioplasty or coronary artery bypass grafting. In the highest dosing group (24-μg/kg bolus followed by 0.4 μg · kg⁻¹ · min⁻¹), a trend toward higher frequency of ischemia and hypotension was observed, but these effects were not evident at lower doses (0.1-0.2 μg · kg⁻¹ · min⁻¹). Levosimendan-treated patients in general experienced a lower risk of death and worsening heart failure than patients receiving placebo during both the 6-h infusion (2.0% vs. 5.9%) and over 24 h (4.0% vs. 8.8%; P = 0.044). Furthermore, all-cause mortality among levosimendan-treated patients was significantly lower than with placebo for the 14-day period after the start of treatment (11.7% vs. 19.6%; P = 0.031) and exhibited a trend toward reduced mortality after 180 days of follow-up (22.6% vs. 31.4%; P = 0.053). This study suggests that levosimendan infusions of 0.1-0.2 μg · kg⁻¹ · min⁻¹ are favorable compared with higher doses, because they combine a low potential of side effects with a maintained positive effect on survival in patients with LV failure complicating acute myocardial infarction.

Although levosimendan also produced significantly fewer ischemic adverse side effects compared with dobutamine in the LIDO study, did not aggravate ischemia in patients with stable coronary heart disease as assessed by a 24-h Holter electrocardiogram, and enhanced cardiac output in patients with ischemic heart disease and LV dysfunction, caution may be advised when this drug is administered in patients with critical coronary stenoses and regional myocardial ischemia. In this setting, despite improvement of overall contractile function, animal experiments demonstrated detrimental effects of levosimendan that may have been due to declines in coronary perfusion pressure producing failure of autoregulation, coronary steal, or increased mechanical stress of myocytes between ischemic and non-ischemic areas.

Myocardial Stunning after Percutaneous Transluminal Coronary Angioplasty in Patients with Acute Coronary Syndrome

Improvement of the function of stunned myocardium after percutaneous transluminal coronary angioplasty was shown after infusion of levosimendan in 24 patients with acute coronary syndrome in a double-blinded, randomized, placebo-controlled trial. Levosimendan (24 μg/kg over 10 min) was administered 10 min after successful coronary angioplasty, and LV and regional functions were assessed by pressure-volume loops and Slager wall motion analysis, respectively. In levosimendan-treated patients, systolic function improved and the number of hypokinetic segments decreased from 8.9 ± 0.9 to 6.5 ± 1.1 when compared with placebo (7.8 ± 1.0 to 8.5 ± 1.1). This action occurred without parallel impairment of diastolic function.

Cardiac Surgery

Although the efficacy of levosimendan has repeatedly been demonstrated in the perioperative setting, the number of patients investigated was rather small. In a randomized, double-blinded, placebo-controlled study, levosimendan (18- or 36-μg/kg bolus and 0.2- or 0.3-μg · kg⁻¹ · min⁻¹ infusion) administered 15 min before separation of cardiopulmonary bypass and continued for 6 h had beneficial effects on cardiac performance in low-risk patients and had no detrimental effects on arterial oxygenation and perioperative arrhythmias. In this study, administration of the 36-μg/kg bolus instantly increased heart rate, although this effect vanished after 1 h despite continuation of the infusion. Similarly, levosimendan (8 or 24 μg/kg administered as a 5-min bolus without continuous infusion) improved hemodynamic parameters without changing myocardial oxygen consumption or substrate extractions after coronary artery bypass grafting in patients with ejection fractions greater than 30%. The high dose but not the low dose of levosimendan increased...
heart rate (maximum 11 beats/min) during the observation period of 1 h. In the setting of off-pump coronary artery bypass surgery, increases in stroke volume and cardiac output and decreases in systemic vascular resistance were observed when levosimendan was administered in two different bolus doses (12 or 24 μg/kg over 10 min) 20 min before the start of surgery in patients with normal preoperative ventricular function. Heart rate increased in both levosimendan-treated groups during the observation period of 1 h, whereas no differences in mean arterial blood pressure were demonstrated compared with placebo.118

Cardiogenic Shock
In the presence of refractory cardiogenic shock (defined as cardiac index \(< 2.21 \text{ min}^{-1} \text{ m}^{-2}\), PCWP >16 mmHg, systolic blood pressure < 90 mmHg, and requirement of catecholamines), 0.1 μg · kg\(^{-1}\) · min\(^{-1}\) levosimendan for 24 h as add-on therapy favorably altered hemodynamic parameters by increasing cardiac index from 1.8 ± 0.4 to 2.4 ± 0.61 · min\(^{-1}\) · m\(^{-2}\) and decreasing systemic vascular resistance from 1,559 ± 430 dyn · s · cm\(^{-5}\) to 1,109 ± 202 dyn · s · cm\(^{-5}\), although it was administered without administration of a bolus in 10 patients. No significant changes in mean arterial blood pressure (78 mmHg to 73 mmHg), heart rate (96 to 101 beats/min), or adverse events were observed in this uncontrolled, retrospective study.72 Similarly, in a case series of 10 patients with cardiogenic shock undergoing emergency surgical revascularization, levosimendan in addition to standard catecholamines produced favorable effects.74

Right Ventricular Dysfunction
Because levosimendan decreased PCWP more effectively than dobutamine,14 the substance may be of value in patients with reversibly increased pulmonary pressures or right ventricular dysfunction, e.g., in patients during and after heart transplantation. Using dynamic positive emission tomography, pulmonary artery catheterization, and echocardiography, improved right ventricular mechanical efficiency (+24%) was demonstrated after administration of an 18-μg/kg bolus and a 0.3-μg · kg\(^{-1}\) · min\(^{-1}\) continuous infusion of levosimendan in eight patients with NYHA functional class III or IV symptoms of heart failure in a double-blinded, crossover, placebo-controlled study.81 Although clinical data are sparse, administration of levosimendan with positive inotropic effects and parallel decreases in pulmonary pressures is promising in the setting of right ventricular dysfunction119 and could confirm the encouraging results of animal studies80 in this setting.

Combination with Other Positive Inotropic Drugs
Numerous reports of the efficacy of levosimendan as add-on therapy to catecholamines exist regarding improvement in hemodynamic parameters68,72,74,117,120,121, clinical data evaluating specific combinations at specific doses, however, are lacking. Efficacy of addition of levosimendan (6-μg/kg bolus plus 0.2-μg · kg\(^{-1}\) · min\(^{-1}\) continuous infusion for 24 h) was shown in patients with NYHA functional class IV heart failure refractory to a continuous infusion of dobutamine (10 μg · kg\(^{-1}\) · min\(^{-1}\)) and furosemide.75 In this study, combination of these positive inotropic drugs improved hemodynamics (increase in cardiac index 1.19 ± 0.661 · min\(^{-1}\) · m\(^{-2}\) and decrease in PCWP 5.4 ± 8.7 mmHg) and consistently alleviated symptoms than when compared with dobutamine alone (increase in cardiac index 0.44 ± 0.32 l · min\(^{-1}\) · m\(^{-2}\) and increase in PCWP 1.0 ± 4.4 mmHg) after 24 h. This investigation confirmed an experimental study in conscious dogs that demonstrated superiority of a combination therapy of dopamine and levosimendan (i.e., levosimendan potentiated the positive inotropic effects of dopamine while attenuating its deleterious action on chamber compliance) over treatment with dopamine alone.122 Furthermore, addition of levosimendan to epinephrine during profound acidosis improved the attenuated efficacy of epinephrine in guinea pig hearts.123

Other Possible Indications
Efficacy and safety of intermittent, long-term, concomitant dobutamine and levosimendan infusions in severe heart failure refractory to dobutamine alone were evaluated in 36 patients in NYHA functional class IV who were resistant to a 24-h continuous infusion of dobutamine in an uncontrolled, nonrandomized trial. The 45-day survival rates were 6% and 61% in patients treated with weekly dobutamine infusions and biweekly levosimendan infusions, respectively.124 Data regarding the use of levosimendan in children, pregnancy, and circulatory failure due to septic shock are rare, but published experience gives an encouraging view beyond the treatment of acutely decompensated CHF.80,82–84,121,125–127

Economics
Currently, the clinically recommended administration of levosimendan is a single 24-h infusion, which is usually performed using one 12.5-mg vial with an average cost of approximately €700 ($875).

A cost-effectiveness analysis was performed for intravenous treatment with levosimendan compared with dobutamine in patients with severe low-output heart failure based on the data of the LIDO study.128 Costs were based on study drug usage and hospitalization in the 6-month follow-up of the study, and the primary effectiveness measure was the gain in life expectancy. The mean survival in the LIDO study over 6 months was extrapolated (157 ± 52 and 139 ± 64 days for levosi-
Levosimendan- and dobutamine-treated patients, respectively. This assumed a mean additional lifetime of 3 yr based on the CONSENSUS trial\(^ {29} \) due to the similar patient population, and the gain in life expectancy was estimated at 0.35 yr/patient. Levosimendan increased the mean cost per patient by €1,108, which was attributable to the cost of the drug. Although the absolute difference in drug costs was relatively high (€1,024 vs. €41 for one treatment of levosimendan vs. dobutamine), the incremental cost per life-year saved was only €3,205 on European average, which is well below the acceptable threshold for cardiology therapies. Although the patients in the levosimendan group were alive for more days and thus at risk for a longer period of hospitalization, there was no increase in resource utilization with levosimendan treatment compared with dobutamine.

Conclusion

Levosimendan is a positive inotropic drug with vasodilating properties that has been extensively investigated in experimental studies and that is also increasingly the subject of clinical trials. Clinical trials that are currently under way in the United States (REVIVE study) and in Europe (SURVIVE study) aim to establish the role of levosimendan in short- and long-term therapy of patients with CHF. To date, clinical experience with levosimendan is encouraging because it combines several beneficial actions that considerably differ from other cardiotonic drugs. First, levosimendan enhances myocardial force without increasing intracellular Ca\(^ {2+} \) concentrations, which, in context with neutral effects on myocardial oxygen demand and heart rhythm, should be of benefit compared with catecholamines or PDE III inhibitors. Second, levosimendan does not impair myocardial relaxation, a possible limitation of other Ca\(^ {2+} \) sensitizers. Third, stimulation of ATP-sensitive potassium channels improves coronary blood flow, reduces preloading and afterload, and may exert anti-ischemic actions. Finally, the drug has advantages on short- and long-term survival compared with standard inotropes and is safe, with a low incidence of adverse effects when used in appropriate concentrations. Therefore, part of the benefit of levosimendan may also be achieved because it allows other cardiotonic agents that may have adverse effects on clinical outcome to be reduced in dose or avoided.

References

17. Fabiato A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245:C1–14.
25. Endoh M, Blanks JR: Actions of sympathomimetic amines on the Ca\(^ {2+} \) transients and contractions of rabbit myocardium: Reciprocal changes in myofilament Ca\(^ {2+} \) sensitivity but nor-
26. Strang K, Sweitzer N, Greaser M, Moss R: Beta-adrenergic receptor stimu-

Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpeläinen I: Stereospecific binding of levosimendan to cardiac troponin C causes Ca2+-sensitization. Eur J Pharmacol 1997; 339:97–100

2001; 86:81–7

431–3

effectors of ischemic or pharmacological preconditioning? Circ Res 2000; 87:

myocardial contractility, coronary and peripheral blood flow, and arrhythmias

during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J

versus proarrhythmia with selective opening of the myocardial sarcolemmal

channels and myocardial preconditioning. Circ Res 1999; 84:973–9

novel Ca2+

drial KATP channel opener. Eur J Pharmacol 2001; 428:311–4

Wouters PF: Effects of levosimendan on right ventricular function and ventricu-

mendan is superior to milrinone and dobutamine in selectively increasing micro-

Di Angeliantonio E, Orecchioni A, Pandian NG, Pietropaoli P: Effects of levosi-

326

404:191–9

Effects of levosimendan on cardiac arrhythmia: Electrophysiologic and ambula-

tory electrocardiographic findings in phase II and phase III clinical studies in

cardiac failure. Am J Cardiol 1999; 83:16–20

Singh BN, Schneider M, Kastrup M, Liu J: Treatment of acute heart failure

with a calcium sensitizing agent in patients with heart failure after an extended continuous infusion of levosimen-

Lehtonen I, Sundberg S: The contractility enhancing effect of the calcium sen-

sitizer levosimendan is not attenuated by carvedilol in healthy subjects. Eur J

Clin Pharmacol 2002; 58:49–52

Sundberg S, Lehtonen I: Haemodynamic interactions between the novel calcium sensitizer levosimendan and isosorbide-5-mononitrate in healthy sub-

Toivonen I, Viitasalo M, Sundberg S, Akkila J, Lehtonen I: Electrophysi-

ologic effects of a calcium sensitizer inotrope levosimendan administered intra-

Labriola C, Siro Brigiani M, Carrata F, Santangelo E, Amantza B: Hemo-

McGovern MF, Pagel PS, Lowe D, Hettrick DA, Warth DC: Levosimendan in-

duces the inotropic actions of dopamine in conscious dogs. J Cardiovasc

pharmacology 1996; 28:36–47

Toller W, Wielgert G, Stranz C, Brunner F: Contractile action of levo-

Copyright © by the American Society of Anesthesiologists. Unauthorized reproduction of this article is prohibited.