To the Editor—Schreiber et al.¹ noted an association between larger doses of succinylcholine and a reduced incidence of fasciculation and myalgia. However, pretreatment with a nondepolarizing neuromuscular blocker is also associated with a reduced risk of fasciculation and myalgia. It is a common practice for clinicians to use a larger dose of succinylcholine when they have provided pretreatment with a nondepolarizing neuromuscular blocker, making pretreatment a potential confounder.² Consequently, pretreatment with a nondepolarizing neuromuscular blocker could be a confounder in the association between higher doses of succinylcholine and a reduced risk of fasciculation and myalgia: Pretreatment is a determinant of the outcome under investigation, it is not germane to the association under investigation, and it may not be equally distributed among study groups.³ Does the available data permit adjusting for this potential confounder, or is it better to consider the associations between the dose of succinylcholine and the risks of fasciculation and myalgia as hypotheses for future investigation?

Robert E. Kettler, M.D., Medical College of Wisconsin, Milwaukee, Wisconsin. r.kettler@mcw.edu

References

(Accepted for publication February 2, 2006.)

Dose Inflation When Using Precurarization

To the Editor—I read with great interest the meta-analysis by Schreiber et al.¹ about the prevention of succinylcholine-induced fasciculation and myalgia. After reviewing carefully an abundant literature, the authors conclude that nondepolarizing neuromuscular blocking agents given before succinylcholine are effective in reducing fasciculations and myalgias. The meta-analysis also contains an analysis of the side effects that were reported in the studies, and the authors point out that the incidence of these side effects is not negligible. In particular, difficulty in breathing or swallowing is considered as potentially serious.

The incidence and magnitude of these neuromuscular side effects are most likely related to the dose given, and the meta-analysis by Schreiber et al.¹ provides evidence of this dose relation for pancuronium. The same is probably valid for all nondepolarizing agents. The authors recommend that “. . . the smallest dose of each agent that has shown efficacy in these randomized trials should be given. These doses are unlikely to be above 10% of the respective ED₉₅.”¹ I agree. Most studies reporting adverse events involved doses that were clearly above 10% of the ED₉₅. When other neuromuscular blocking agents increased progressively. On average, the equivalent dose doubled between the late 1970s and the early 2000s (fig. 1).

Assuming that the studies were designed to reflect clinical practice, it follows that there has been a dangerous tendency to increase the precurarizing doses in the past 20–30 yr. Clinicians most likely administered the newer drugs in doses corresponding to the pub-
In Reply:—We thank Drs. Kettler and Donati for their interest in our meta-analysis1 and appreciate the opportunity to reply.

We agree with Dr. Kettler that pretreatment with a nondepolarizing neuromuscular blocking agent could be a confounder in the association between higher doses of succinylcholine and a reduced risk of fasciculation and myalgia. However, Dr. Kettler assumes that “It is a common practice for clinicians to use a larger dose of succinylcholine when they have provided pretreatment with a nondepolarizing neuromuscular blocker, making pretreatment a potential confounder.” Currently, the literature does not provide any evidence for this statement. Unfortunately, the available data do not permit adjusting for this potential confounder. As suggested by Dr. Kettler, the association between the dose of succinylcholine and the risk of fasciculation and myalgia may thus serve as a hypothesis for future research.

Dr. Donati analyzed the increase of precurarization doses during the past years using a linear regression analysis. His very interesting analysis shows that equivalent doses of most of the neuromuscular blocking agents that have been used in precurarization studies were doubled on average during the past 30 yr. Because of this dose inflation, the incidence of precurarization-related side effects increased in more recent studies. Dr. Donati suggests that pretreatment with a nondepolarizing neuromuscular blocker is effective to avoid myalgia and fasciculation and is also safer when the dose does not exceed 10% of ED95.

We agree with his comment that our conclusion on the risk of precurarization-related side effects should be more specific. However, there is some evidence in the literature that potentially serious side effects may occur even with the recommended dose of 0.1 × ED95. Engbaek and Viby-Mogensen2 reported the case of a healthy 32-yr-old man who developed serious signs of partial paralysis with respiratory impairment. In the minutes after administration of the agent, the patient could not swallow or to move. Engbaek and Viby-Mogensen suggested an extreme sensitivity for neuromuscular blockage even with a dose of 0.1 × ED95. Clinicians should be aware of this risk when using precurarization. To maximize patients’ safety, a close monitoring for precurarization-related side effects is strongly recommended.

Jan-Uwe Schreiber, M.D.,* Thomas Fuchs-Buder, M.D., Christopher Lysaskowski, M.D., Martin R. Tramér, M.D., D.Phil, ‘University Hospital of the Saarland, Homburg, Germany. jan.schreiber@uniklinik-saarland.de

References

(Accepted for publication February 2, 2006.)

In Anesthesiology; V 105, No 1, Jul 2006.

© 2006 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

References

(Accepted for publication February 2, 2006.)

David C. Warltier, M.D., Ph.D., acted as Handling Editor for this exchange.

Jan-Uwe Schreiber, M.D.,* Thomas Fuchs-Buder, M.D., Christopher Lysaskowski, M.D., Martin R. Tramér, M.D., D.Phil, ‘University Hospital of the Saarland, Homburg, Germany. jan.schreiber@uniklinik-saarland.de

References

(Accepted for publication February 2, 2006.)
To the Editor—Ferschl et al.1 recently reported that preoperative preparation at an anesthesia preoperative medicine clinic (APMC) can reduce both case cancellations and case delays. Their study showed that the median time to start a case in the operating room decreased significantly (by 2–3 min) in patients who were evaluated at the APMC. This time gain as a result of the APMC has not been shown previously. Furthermore, the authors demonstrated a significant decrease in day-of-surgery cancellations (64% for same-day cases and 63% for admitted surgical patients). Although this latter benefit of an APMC has been reported previously,2,3 the authors still can be commended for their contribution to the increasing evidence of the positive effects of an APMC on the cost effectiveness of the perioperative process.

However, we do have some important questions regarding this study. First, it is not clear who was responsible for the ultimate decision to cancel a case: the anesthesiologist or the surgeon? Second, the authors report a very high rate of cancellations compared with the rates reported in previous studies (11% in the current study vs. 2% cancellations for medical reasons in previous studies).2,5 In the article, no explanation is given for this high cancellation rate. Therefore, although this was a retrospective study, it would have been interesting to have a minimum some indication of the reasons for these cancellations. For example, if cancellations were caused by incomplete laboratory test results, a similar reduction in cancellations would possibly have been obtained by reeducation using a protocol for preoperative additional testing. Furthermore, cancellations for nonmedical reasons (e.g., surgery no longer indicated, patient ‘bumped’ from the room, emergency patient instead of the planned surgery) can hardly be influenced by an APMC. In a large cohort study (n = 21,553), we described the effects of a gradual introduction of an APMC for all surgical patients in a university hospital.2 This study also documented the reasons for cancellations within 24 h before the planned surgery. After adjustment for age and sex, we found a significant decrease with 30% for cancellations due to medical reasons (e.g., unstable cardiovascular disease or insufficient diagnostic workup) but a decrease of only 10% for cancellations for nonmedical reasons. Third, at the authors’ institution, the decision as to whether a patient is seen in the APMC is made by the referring surgeon. This resulted in a referral to the APMC of only 43% of the 6,524 surgical patients included in the study.

However, as the authors acknowledge, the effect of the APMC on the rate of day-of-surgery case cancellations would likely have been greater when the decision to refer patients to the APMC was not made by the surgeons. We therefore wonder why the authors do not recommend an APMC visit for every patient scheduled for surgery. Do they believe that it will not further enhance patient safety and the utilization of hospital resources?2,3,4 Of course, it may be difficult to compel surgeons to refer all of their patients to the APMC. However, by using the accumulating evidence demonstrating that an APMC yields fewer cancellations on the day of surgery, precious operation room time can be saved. The APMC also guarantees that truly necessary preoperative tests will be ordered timely.2,5 Finally, an APMC for all surgical patients reduces the responsibilities and workloads of the surgeons.

Therefore, combining the available evidence, we may conclude that when the APMC is used as an integral component of preoperative care for all surgical patients, the number of unnecessary cancellations due to medical reasons will decrease considerably. Furthermore, patient safety can be expected to increase by a more timely preoperative evaluation and the possibility to discover and treat clinically relevant comorbidity (e.g., starting a β blocker in patients at high risk for perioperative myocardial ischemia).

Wilton A. van Klei, M.D., Ph.D.* Cor J. Kalkman, M.D., Ph.D., Karel G. M. Moons, Ph.D.* University Medical Center Utrecht, Utrecht, The Netherlands. w.a.vanklei@umcutrecht.nl

References

(Accepted for publication February 28, 2006)
Despite the various benefits of APMC, such as decreased perioperative morbidity and mortality,2,3 the value of a full-service APMC for all preoperative patients is increasingly under scrutiny because of the cost of APMCs.5 There are growing number of facilities and ambulatory surgical centers replacing APMCs with ‘cost-effective’ alternatives such as phone preanesthesia evaluations, reviews of health surveys, and computer-assisted information gathering.5 It is also increasingly common that preoperative anesthesia evaluation is conducted in preoperative holding hours even minutes before scheduled surgery and anesthesia. The study of Dr. Ferschl et al. clearly raises questions about the practice and calls for more studies to evaluate the safety, efficiency, cost, and patient and staff satisfaction of this practice.

Operating room efficiency is a major determinant of hospital cost. Reengineering the perioperative process, rather than focusing on operating room turnover time, has recently shown promising results for improving overall operating room productivity.7 It was estimated that the cost of operating room time was between $1,430 and $1,700/h plus the variable setup cost of the individual case.8-10 However, the negative impact of case cancellations goes far beyond its financial consequence to the hospital; it also impacts patients, family members, and society.10 Furthermore, frequent case cancellations can decrease both patient and staff satisfaction. In a health industry that is more frequently pay-for-performance oriented, quality, efficiency, and patient satisfaction are increasingly used as indicators for consumers as well as insurers for selecting healthcare providers. In the cost-driven environment, only hospitals that deliver high-quality care and high patient satisfaction at an affordable price can maintain their financial viability. The study of Dr. Ferschl et al., along with others, clearly demonstrates that streamlining the perioperative practice, including APMCs, can be more rewarding.

We will share our full APMC experience, in addition to our decreased surgery cancellation rate, in our following report.

Chunyuan Qiu, M.D., M.S.,* Mark A. MacVay, M.D., Antonio F. Sanchez, M.D. *Kaiser Permanente Baldwin Park Medical Center, Baldwin Park, California. chunyuan.x.qiu@kp.org

The authors thank Rosie Rivera, R.H.I.T. (System Administrator, Kaiser Permanente Baldwin Park Medical Center, Baldwin Park, California), for her effort in collecting perioperative data.

References

9. Dexter F, Blake JT, Penning DH, Lubarsky DA: Calculating a potential increase in hospital margin for elective surgery by changing operating room time allocations or increasing nursing staffing to permit completion of more cases: A case study. Anesth Analg 2002; 94:138-42

(Accepted for publication February 28, 2006.)
To the Editor—A 32-yr-old gravida 2, para 1 woman underwent uneventful placement of an epidural catheter at L3–L4. A bolus of 10 ml bupivacaine, 0.25%, was given incrementally, without adverse effect. A member of the anesthesia care team primed the epidural tubing (primary IV Plumset; Hospira Inc., Lake Forest, IL; Convertible Pin 107 inch with option lock) with 0.0625% bupivacaine containing 2 μg/ml fentanyl (250 ml bag total). The epidural tubing was inserted into an Abbott Labs Micro/Macro PlumXL infusion pump (Abbott Park, IL). No filter was used between the epidural catheter and tubing. Approximately 2 h after epidural insertion and pump hookup, the patient called the nurse and reported difficulty with breathing and numbness of the chest. On physical examination, the patient was observed to have good grip strength, a T4 sensory level to cold test, and blood pressure within normal limits. There were no fetal heart rate abnormalities.

It was observed that the epidural infusion bag was empty and that both the flow regulator and the door on the infusion pump were in the open position. Epidural infusion was temporarily suspended, and the mother delivered a healthy baby, with no adverse sequelae.

Support was provided solely from institutional and/or departmental sources.

References

(Accepted for publication February 28, 2006)

(Accepted for publication February 28, 2006)
was detected as a round echo-free space that was located at the tip outline of trachea was seen or the balloon pressure reached 30 mmHg. filling the balloon was monitored by TEE, and saline was injected until the considered to be located immediately above the carina. The process of through the endotracheal tube until the balloon tip was located exactly at the endotracheal tube tip. A mark was made on the balloon shaft for identification. After initiation of CPB, the endotracheal tube was withdrawn so that its tip was located 6 cm above carina as previously described. The balloon was inserted 6 cm beyond the above-noted marking on the balloon shaft. At this point, the distal end of the balloon was considered to be located immediately above the carina. The process of filling the balloon was monitored by TEE, and saline was injected until the outline of trachea was seen or the balloon pressure reached 30 mmHg.

The transverse view of the trachea with the saline filled balloon was detected as a round echo-free space that was located at the tip

of the fan-shaped view. When the probe was placed at a depth of approximately 18–25 cm from the incisor, the sausage-shaped aortic arch, with its proximal part anterior to the trachea, was viewed at a multiplane angle of 0°. Using the upper esophageal (UE) aortic arch long axis, the TEE probe was adjusted until the image with the maximal major diameter was obtained. Figure 1 is a sample image of UE aortic arch long axis with and without the endotracheal balloon.

To image the INA, using the UE aortic arch long axis, the probe was withdrawn gradually while visualization of the endotracheal balloon was maintained. As the aortic arch disappeared from the view, the transverse view of the INA was seen anterior to the trachea at multiplane angle of approximately 40° (20°–65°). The TEE probe was adjusted until the transverse INA image, which was most circular in form at 2 cm above the aortic arch, was obtained. This plane was named UE innominate short axis. The UE innominate long axis was detected at a multiplane angle of approximately 130° (110°–160°). In this view, the INA was seen to be arising from and connected directly to the proximal aortic arch. Figure 2 is a sample image of UE innominate short axis with and without the endotracheal balloon.

The main reason for the “blind zone” in TEE is the tracheal air column, which lies right and ventral to the esophagus. Echo waves are scattered completely by air. In patients undergoing cardiovascular surgery involving CPB, ventilation is terminated, and endotracheal balloon insertion is feasible. The insertion of a saline-filled endotracheal balloon eliminates the tracheal air column, thereby making possible the TEE imaging of the proximal aortic arch and INA anterior to the trachea. This new acoustic window is named “TEE transtracheal acoustic window.”

This TEE transtracheal acoustic window seems to provide improved visualization of the proximal aortic arch and INA. The major limitation of this window is that it can only be used when the ventilator is disconnected or during CPB. Before and after CPB, routine TEE must be used. Further studies are required to compare quantitatively the image quality of the proximal aorta and INA, with and without the presence of an endotracheal saline-filled balloon.

Yu-Lan Li, M.D., David T. Wong, M.D., Wei Wei, M.D., Jin Liu, M.D.* “West China Hospital, Sichuan University, Sichuan, PR China. cast_tale@yahoo.com.cn

References

(Accepted for publication March 7, 2006.)
To the Editor—We report a clinical case in which a patient was recognized to have methemoglobinemia from dapsone therapy and was treated intraoperatively with intravenous methylene blue. Each time methylene blue was administered, there was a concurrent dramatic reduction in Bispectral Index (BIS) to burst suppression values.

The case we report is of a 71-yr-old woman with a medical history remarkable for ophthalmic pemphigoid, which was treated with dapsone therapy. She presented for pelvic exenteration surgery for endometrial cancer. A thoracic epidural (T9–T10) was placed preoperatively for postoperative analgesia, and a test dose only of 3 ml lidocaine, 1.5%, with epinephrine (15 μg) was given in the preoperative area, without event. During induction of general anesthesia with intravenous propofol (180 mg) and fentanyl (100 μg), the patient underwent intubation with succinylcholine (90 mg). After intubation, despite her breathing 100% oxygen, the patient’s oxygen saturation did not improve to greater than 94%. The patient had no known pulmonary disease. After an otherwise uneventful induction of general anesthesia and placement of radial artery and central venous catheters, arterial blood gas analysis revealed a pH of 7.57, a partial pressure of carbon dioxide (PCO2) of 34 mmHg, and a partial pressure of oxygen (PO2) of 169 mmHg with an oxygen saturation of 92.3%. It was 94.7%, with no significant change in pH or PCO2. More methylene blueglobin had decreased to 4.3%, and the oxygen saturation improved to return to the 40s again. On the next blood gas analysis, the methemoglobinemia was made and attributed to the patient’s long-term use of the medication dapsone. Given the extent of the surgery and the number of drugs that have been implicated in causing methemoglobinemia, we decided to administer methylene blue, which was done in this case. Methylene blue administration.

In this case, upon administration of methylene blue, the BIS decreased from the 40s to the low teens (burst suppression range), and this precipitous decrease in the BIS seemed to occur with each administration of methylene blue. There are a number of nonanesthetic factors that can influence the BIS value.5 Muscle relaxants have been shown to reduce the BIS value.3 There are no clinical reports of methylene blue’s effect on muscle relaxation, save a couple of laboratory interactions with smooth muscle, both of which suggest an action to increase rather than decrease smooth muscle tone, so this is an unlikely explanation of this effect.4,5 Other conditions shown to reduce the BIS value are related to central nervous system perfusion, e.g., hypoglycemia, hypovolemia, and cerebral ischemia. In this case, methylene blue administration not only led to a reduction in the BIS value but increased the blood pressure, necessitating labetalol therapy, with all the other anesthetic variables being unchanged, so it is difficult to explain this effect with cerebral perfusion changes. There are no clinical reports of methylene blue having a direct central nervous system effect, save its use to treat and prevent ifosfamide-induced encephalopathy6; however, laboratory studies have shown that the nitric oxide neurotogenic activity of nitric oxide donors can be inhibited by methylene blue and other inhibitors of guanylyl cyclase.7 This longer-term neuronal action would be unlikely to impact such a rapid change in BIS value; however, it cannot be ruled out that methylene blue has a direct neuronal effect or displaces a centrally active drug.

Although there certainly could have been an artifactual reduction in the BIS, there are no reports to date that have shown that methylene blue interferes with the BIS monitor or other electroencephalographic recording. The fact that it occurred immediately after methylene blue dosing and on each subsequent occasion suggests a potential link between the two. Whatever the mechanism of this reduction, we suggest that anesthesiologists be vigilant for methemoglobinemia in patients receiving dapsone therapy and for BIS interference with methylene blue administration.

Andrew J. Matsisoff, M.D., Moen K. Panni, M.D., Ph.D.*
*University of Texas Health Sciences Center, Houston Medical School, Houston, Texas. mpanni@uth.tmc.edu

References

2. Dalahu AA: Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg 2005; 100:765–73

Accepted for publication March 7, 2006.

Support was provided solely from institutional and/or departmental sources.