Neurokinin-1 Receptor Antagonists Inhibit the Recruitment of Opioid-containing Leukocytes and Impair Peripheral Antinociception

Heike L. Rittner, M.D., D.E.S.A.,* Christian Lux,† Dominika Labuz, Ph.D.,‡ Shaaban A. Mousa, Ph.D.,* Michael Schäfer, M.D.,§ Christoph Stein, M.D.,¶ Alexander Brack, M.D., D.E.S.A.*

Background: Neurokinins (e.g., substance P) contribute to pain transmission in the central nervous system, peripheral neurogenic inflammation, and leukocyte recruitment in inflammation. Leukocyte recruitment involves (1) up-regulation of adhesion molecule expression through neurokinin-1 (NK1) receptors on endothelial cells, (2) augmented chemokine production, or (3) chemotaxis through NK1 receptors on leukocytes. In inflammation, leukocytes can trigger endogenous antinociception through release of opioid peptides and activation of opioid receptors on peripheral sensory neurons. The authors hypothesized that NK1 receptor antagonists impair recruitment of opioid-containing leukocytes and stress-induced antinociception.

Methods: Rats were treated intraperitoneally and intrathecally with peripherally restricted (SR140333) or blood-brain barrier–penetrating (L-733,060) NK1 receptor antagonists and were evaluated for paw pressure thresholds, numbers of infiltrating opioid-containing leukocytes and leukocyte subpopulations, expression of adhesion molecules, NK1 receptors, and chemokines 24–48 h after complete Freund adjuvant–induced hind paw inflammation.

Results: Systemic and peripherally selective, but not intrathecal, NK1 receptor blockade reduced stress-induced antinociception (control: 177 ± 9 g, L-733,060: 117 ± 8 g, and control: 166 ± 30 g, SR140333: 89 ± 3 g; both P < 0.05, t test) without affecting baseline hyperalgesia. In parallel, local recruitment of opioid-containing leukocytes was decreased (L-733,060 and SR140333: 56.0 ± 4.3 and 59.1 ± 7.9% of control; both P < 0.05, t test). NK1 receptors were expressed on peripheral neurons, infiltrating leukocytes, and endothelial cells. Peripherally administered NK1 receptor blockade did not alter endothelial expression of intercellular adhesion molecule-1 or local chemokine and cytokine production, but decreased polymorphonuclear cell and macrophage recruitment.

Conclusions: Endogenous inhibition of inflammatory pain is dependent on NK1 receptor–mediated recruitment of opioid-containing leukocytes.

MANY cellular inflammatory mediators contribute to the generation of pain.1,2 However, leukocyte recruitment also contributes to peripheral antinociception.3 In complete Freund adjuvant (CFA)-induced inflammation, leukocytes containing opioid peptides (e.g., β-endorphin and metenkephalin) migrate to inflamed tissue. After exposure to a cold water swim stress (CWS) or local injection of various releasing agents, opioid peptides can be liberated from leukocytes and bind to nearby opioid receptors on peripheral sensory neurons resulting in unilateral antinociception.3–5 Both polymorphonuclear leukocytes (PMNs) and monocytes/macrophages cause opioid-mediated antinociception in different stages of inflammation.6–8 Blockade of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) or selectins inhibits the recruitment of opioid-containing leukocytes into the paw and CWS-induced antinociception.9–11 In early stages (i.e., 0–12 h after CFA injection), chemokines (i.e., CXCR2 ligands) are produced at the site of inflammation, mediate the recruitment of opioid-containing PMNs, directly trigger the release of opioid peptides from PMNs, and induce peripheral opioid-mediated antinociception.5,6 In contrast, at later stages (i.e., 24–96 h after CFA), molecular mechanisms for the recruitment of opioid-containing leukocytes have not yet been identified. PMNs are predominantly recruited in early inflammation (0–12 h after CFA), whereas macrophages are the principal leukocyte subpopulation at later stages (beyond 24 h after CFA).8

Leukocyte recruitment is classically mediated by chemokines, but other mediators, such as complement or neuropeptides, can also act as chemoattractants. Substance P is one of the neuropeptides and was originally described as a mediator in pain transmission in the central nervous system and in neurogenic inflammation in peripheral tissue.12,15 Three neurokinin (NK1,3) receptors have been identified. Substance P preferentially binds to NK1 receptors.1,14,15 NK1 receptors are expressed on neurons in the peripheral and central nervous system as well as on leukocytes, endothelial cells, and keratinocytes.16–18 Neurokinin receptor agonists enhance leukocyte migration by three distinct mechanisms: (1) direct chemotactic effects on monocytes and PMNs,19–22 (2) binding to NK receptors on endothelial cells and increasing the expression of ICAM-1 and several selectins17,23,24 and (3) augmentation of local chemokine production (e.g., CC chemokine ligand 2 [CCL2]; synonym: monocyte chemoattractant protein 1).25

In this study, we examined whether the blockade of NK1 receptors (1) impairs opioid-mediated peripheral antinociception; (2) reduces recruitment of opioid-containing leukocytes; and (3) influences endothelial adhe-
sion molecule expression, local chemokine production, and/or migration of PMNs or monocytes/macrophages at 24 or 48 h of CFA inflammation. To further characterize the site of action of NK₁ receptor agonists, we used systemic administration of blood-brain barrier–penetrating (L-735,060) and nonpenetrating NK₁ receptor antagonists (SR140333) as well as intrathecal injection.

Materials and Methods

Animals and Model of Inflammation

Animal protocols were approved by local authorities and are in accordance with the guidelines of the International Association for the Study of Pain. Male Wistar rats weighing 180–240 g were injected with 150 µl CFA (Calbiochem, La Jolla, CA) into the right hind paw (intraplantar) during brief isoflurane anesthesia and developed an inflammation confined to the inoculated paw. Experiments were conducted at 0–48 h after inoculation of CFA. All further injections were also performed during brief isoflurane anesthesia.

Measurement of Paw Pressure Threshold

Mechanical nociceptive thresholds were assessed using the paw pressure algesiometer (modified Randall–Selitto test; Ugo Basile, Comerio, Italy). Rats were handled for 4 days before testing. On the day of testing, rats were held under paper wadding, and incremental pressure was applied via a wedge-shaped, blunt piston onto the dorsal surface of the hind paw by an automated gauge. The pressure required to elicit paw withdrawal, the paw pressure threshold, was recorded (cutoff at 250 g). The average of three trials, separated by 10-s intervals, was calculated. The same measurement was performed on the contralateral paw in alternated sequence to preclude order effects. To examine endogenous mechanisms of antinociception, paw pressure thresholds were determined at baseline conditions and 1 min after swimming in 2°C–4°C cold water for 1 min. An increase in paw pressure threshold was interpreted as mechanical antinociception. All behavioral experiments were performed by an examiner blinded to the treatment protocol.

Implantation of Spinal Catheters

Implantation was performed under continuous isoflurane anesthesia as described. In brief, a 150-mm polyethylene tube (PE 10; Portex, Hythe, United Kingdom) was inserted intrathecally for 25 mm in cervical direction through an incision at the L₃–L₄ level. During the recovery period of 2 days, animals showing neurologic damage (e.g., paralysis of the hind limbs) were excluded from the study. To ensure intrathecal localization of the catheter, 10 µl lidocaine, 2% (Braun, Melsungen, Germany), followed by a 10-µl solvent flush was applied, and the animals were monitored for development and reversal of paralysis of both hind limbs.

Fluorescence-activated Cell Sorting

Antibodies. All hematopoietic cells were stained by mouse anti-rat CD45 Cy5 phycoerythrin monoclonal antibody (clone OX-1, identifies the leukocyte common antigen, 4 µg/ml; BD Biosciences, Heidelberg, Germany). PMNs were identified by mouse anti-rat RP-1 phycoerythrin monoclonal antibody (12 µg/ml). Macrophages were stained by mouse anti-rat CD68 fluorescein isothiocyanate monoclonal antibody (formerly called ED1; 2 µg/ml; Serotec, Oxford, United Kingdom). Opioid-containing cells were labeled by mouse 3E7 monoclonal antibody (recognizing the pan opioid sequence, 20 µg/ml; Gramsch Laboratories, Schwabhausen, Germany) followed by rabbit anti-mouse immunoglobulin (Ig)G2a,2b phycoerythrin antibody (15 µg/ml; BD Biosciences). NK₁ receptor was stained by rabbit anti-rat NK₁ receptor serum (1:100; Chemicon, Hampshire, United Kingdom) at 4°C for 30 min and subsequently by goat anti-rabbit IgG fluorescein isothiocyanate antibody (15 µg/ml; Vector Laboratories, Burlingame, CA). Specificity of staining was controlled by isotype-matched control antibodies (mouse IgG2a, 20 µg/ml, BD Biosciences; and rabbit IgG 4 µg/ml, Santa Cruz, Santa Cruz, CA).

Leukocyte Staining. Cell suspensions from paw tissue were prepared and stained as described. Briefly, subcutaneous paw tissue was enzymatically digested and was pressed through a 70-µm nylon filter (BD Biosciences). Staining with anti-rat CD45 Cy5 phycoerythrin was done without permeabilization. For intracellular stains using 3E7, anti-rat–CD68 fluorescein isothiocyanate, and anti-rat RP-1 phycoerythrin, cells were fixed with 1% paraformaldehyde and permeabilized with saponin buffer. Permeabilized cells were incubated with the aforementioned primary and secondary antibodies. Replacement of the primary antibodies with isotype-matched irrelevant antibodies was used for negative controls.

To calculate absolute numbers of cells per paw, fluorescence-activated cell sorting events from fluorescent TruCOUNT beads and CD45⁺ stained cells were collected simultaneously, and the number of CD45⁺ cells per tube was calculated accordingly. For quantification, 70,000 fluorescence-activated cell sorting events were acquired. Data were analyzed using CellQuest software (all BD Biosciences).

Enzyme-linked Immunosorbent Assay

All experiments were performed 0–48 h after intraplantar injection of CFA. Paw tissue was retrieved, the skin was removed, and subcutaneous tissue was cut into small pieces and processed as described. Substance P, CXC chemokine ligand 1 (CXCL1; synonym: keratinocyte-derived chemokine), CCL2, and interleukin-1β (IL-1β) concentrations were measured by commercially available sub-
NEUROKININ-1 RECEPTORS AND INFLAMMATORY PAIN

stance P, mouse CXCL1, rat CCL2, and rat IL-1β enzyme-
linked immunosorbent assay kits according to
manufacturers’ instructions (Bachem/Peninsula, London,
United Kingdom; Biosource International, Nivelles, Bel-
gium; and R&D, Minneapolis, MN, respectively). To mea-
sure CXCL1, a rat CXCL1 peptide standard was used as
described.6 Optical density was measured by Spectra Max
(Molecular Devices, Ismaning, Germany). Data were ana-
alyzed by the Softmax program (Molecular Devices).

Immunofluorescence
The expression of ICAM-1 and NK1 receptor in in-
flamed paw tissue was analyzed in rats (n = 5/group)
treated with NK1 receptor antagonists immediately be-
fore induction of inflammation and in control animals.
Twenty-four hours later, rats were deeply anesthetized
with halothane and perfused transcardially (0.1 m phos-
phate-buffered saline [PBS], followed by fixative solu-
tion: PBS containing 4% paraformaldehyde, pH 7.4). The
skin with adjacent subcutaneous tissue was removed from
both hind paws, postfixed for 30 min at 4°C in the
fixative solution, and cryoprotected overnight at 4°C in
PBS containing 10% sucrose. The tissue was embedded
in Tissue Tek compound (OCT; Miles, Elkhart, IN), fro-
zened, cut into 7-μm sections, mounted onto gelatin-
coated slides, and processed for immunofluorescence.53
The sections were incubated with mouse anti–ICAM-1
(1:200) alone or in combination with rabbit polyclonal
anti–NK1 receptor antibody (1:500) and then with sec-
ondary antibodies. After incubation with primary anti-
bodies, the tissue sections were washed with PBS and
then incubated with the appropriate secondary antibod-
ies: a Texas red conjugated goat anti-rabbit antibody in
combination with fluorescein isothiocyanate conjugated
donkey anti-mouse. The sections were then washed with
PBS, mounted in Vectashield or Vectashield mounting
media containing 4’,6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories, Burlingame, CA), and viewed
under Zeiss LSM510META confocal laser scanning sys-
tem (Carl Zeiss Imaging, Thornwood, NY). To demon-
strate specificity of staining, the following controls were
included as mentioned in details elsewhere10 by ommis-
sion of either the primary antisera/antibodies or the
secondary antibodies. Cell types were identified based
on morphologic criteria. The number of ICAM and NK1
receptor-positive vessels per section was calculated from
counting 3 sections per animal and 5 squares (384 mm²).

Experimental Protocols

Systemic Application of NK1 Receptor Antago-
nists. Rats were injected intraperitoneally every 12 h
with 20 mg/kg L733,060 (dissolved in sterile water and
further diluted in up to 500 μl normal saline; Tocris,
Bristol, United Kingdom) or 10 mg/kg SR140333 (dis-
solved in dimethyl sulfoxide and further diluted in up to
500 μl normal saline; Sanofi, Paris, France). Doses were
chosen based on previous publications34,35 and our pilot
data. Control animals received solvent only (sterile water
or dimethyl sulfoxide in normal saline, respectively).
CFA was injected intraplantarly after the first injection,
and experiments were performed 24–48 h later.

Intrathecal Application of NK1 Receptor Antago-
nists. Separate groups of rats were injected intrathecal-
ly with 0.5 mg/kg L733,060 (20 μl every 12 h) followed by
10 μl NaCl (0.9%) flushes.56 Doses were chosen in pilot
experiments and did not produce any toxic effects. Con-
tral animals received solvent only. Immediately after the
first injection, paw inflammation was induced by CFA,
and tissue was harvested 24 h later.

Statistical Analysis
Data are presented as raw values or percentage control
of baseline (mean ± SEM). Missing values are due to
injection-related hematoma formation distorting fluo-
rescence-activated cell sorting quantification of leukocyte
subpopulations or due to accidental death by isoflurane
overdose. Normally distributed data were analyzed by t
test. Otherwise, the Mann–Whitney rank sum test was
used. Multiple measurements were analyzed by one-way
analysis of variance for normally distributed data and by
two-way repeated-measures analysis of variance when
dependent and independent factors were present. Post
hoc comparisons were performed by the Student-New-
man-Keuls and Holm-Sidak method, respectively. Differ-
ences were considered significant if P < 0.05.

Results

Stress-induced Antinociception Is Reduced by NK1
Receptor Antagonists
Neurokinin-1 receptor blockade did not significantly
change baseline paw pressure threshold in inflamed (fig.
1) or noninflamed paws (data not shown). At 24 h of
inflammation, CWS-induced antinociception was signifi-
cantly reduced by both intraperitoneal L-733,060 and
intraperitoneal SR140333 treatments (figs. 1A and B), but
not by intrathecal L-733,060 (fig. 1C). Furthermore,
systemic treatment with L-733,060 did not alter baseline
hyperalgesia at 48 h of inflammation, whereas it signifi-
cantly reduced CWS-induced antinociception (table 1).

Recruitment of Opioid-containing Leukocytes Is
Reduced by Blockade of NK1 Receptors
Cold water swim stress-induced antinociception is
mediated by opioid-containing leukocytes at the site of
inflammation.8,30 In the inflamed paw, 213 ± 11 × 10³
3E7⁺CD45⁺ opioid-containing leukocytes per paw were
content in the paw was significantly increased, with a 17.5-fold increase at 24 h. NK₁ receptor expression was observed on endothelial cells as shown by colocalization with ICAM-1, peripheral neurons, and on CD45⁺ leukocytes in the inflamed paw (figs. 3B-D).

Endothelial Adhesion Molecule Expression and Local Chemokine/Cytokine Content after NK₁ Receptor Blockade

Intercellular adhesion molecule 1 and NK₁ receptor immunoreactivities on endothelial cells were quantified. Both were significantly up-regulated at 24 h of inflammation (fig. 4, representative examples; and table 2). Blockade of NK₁ receptors using intraperitoneal SR140333 treatment did not alter ICAM-1 or NK₁ receptor expression at 24 h (table 2). At 24 h inflammation, intraperitoneal SR140333 treatment did not alter the content of CXCL1 (PMN specific), CCL2 (monocyte specific), or IL-1β (table 3).

NK₁ Receptor Blockade Reduces Migration of PMNs and Macrophages

At 24 h of CFA, similar numbers of monocytes/macrophages and PMNs per paw were detected by flow cytometry (245 ± 18 × 10³ CD68⁺ macrophages per paw and 219 ± 16 × 10³ RP1⁺ PMNs per paw; fig. 5). Treatment with intraperitoneal L-733,060 or intraperitoneal SR140333 significantly reduced infiltrating PMNs and macrophages (CFA 24 h: figs. 5A, B, D, and E; CFA 48 h: table 4). CD3⁺ lymphocytes did not change (data not shown). Intrathecal administration of L-733,060 did not influence overall leukocyte migration or recruitment of leukocyte subpopulation at 24 h after CFA (figs. 5C and F).
Fig. 3. Expression of substance P and neurokinin-1 (NK1) receptors in the inflamed hind paw. (A) Substance P content was measured in subcutaneous paw tissue 0–48 h after complete Freund adjuvant injection (CFA) by enzyme-linked immunosorbent assay (P < 0.05, F = 7.6, analysis of variance, Student-Newman-Keuls method rs. 0 h CFA; n = 6/group). Data are presented as mean ± SEM. (B) NK1 receptor expression (red) in the inflamed paw was demonstrated by fluorescent immunohistochemistry 24 h after CFA injection. Arrows point to NK1 receptor immunoreactive endothelial cells, and arrowhead points to neurons (magnification 20×). In the inset, NK1 receptor expression is shown on infiltrating cells (nuclei stained in blue, magnification 40×). Representative sections are shown. (C) NK1 receptor expression on CD45+ cells in the paw was measured by flow cytometry 24 h after CFA injection (gray histogram = unstained control; dotted line = isotype control antibody; thick black line = anti-NK1 receptor antibody). To exclude nonhematopoietic cells and cell debris, cells were pregated on CD45+ leukocytes (data not shown). A representative histogram is shown. (D) To verify expression of NK1 receptor on endothelial cells, inflamed paw tissue was analyzed by fluorescent immunohistochemistry for NK1 receptor (red) and intercellular adhesion molecule 1 (green) 24 h after CFA injection. Coexpression of both markers is shown in yellow (magnification 20×).

Discussion

In this study, we demonstrated that NK1 receptor antagonists (1) impaired stress-induced peripheral opioid-mediated antinociception but did not alter baseline inflammatory hyperalgesia and (2) reduced migration of opioid-containing leukocytes without changing expression of ICAM-1 on endothelial cells or local chemokine/cytokine production. Systemic administration of blood-brain barrier–penetrating (SR140333) and nonpenetrating (L-733,060) NK1 receptor antagonists was equally effective, brain barrier–penetrating (SR140333) and nonpenetrating cytokine production. Systemic administration of blood-sion of ICAM-1 on endothelial cells or local chemokine/opioid-containing leukocytes without changing expres-

form of antinociception is mediated by opioid peptide

saporin-conjugated substance P that destroys NK1 recep-
tor–expressing spinal neurons.40 Inflammatory hyperalgesia is induced by pronociceptive mediators,2,41 including cytokines (e.g., IL-1β12) and chemokines (e.g., CXCL143 and CCL244,45). In our studies, NK1 receptor blockade did not change the local expression of representative hyperalgesic cytokines or chemokines (table 3), in line with the unaltered baseline nociceptive thresholds (fig. 1 and table 1).

In contrast to this lack of change in baseline hyperalgesia, stress (CWS)–induced antinociception was reduced by NK1 receptor antagonists (figs. 1A and B and table 1). Our previous studies demonstrated that this form of antinociception is mediated by opioid peptide release from leukocytes at the site of inflammation and is fully blocked by opioid receptor antagonists in late stages of inflammation.8,30,46 In the current study, we observed a comparable decrease in opioid-containing leukocytes in the inflamed paw using both blood-brain barrier–penetrating (L-733,060) and nonpenetrating (SR140333) NK1 receptor antagonists, whereas intrathecal injection (L-733,060) was ineffective. The intrathecally injected dose of L-733,060 was previously used in rats and was shown to effectively inhibit NR2B tyrosine phosphorylation in the spinal cord in the CFA model.36 In addition to intrathecal injection of L-733,060, we also examined intrathecal injection of SR140333 (up to 6
μg/kg). This treatment did not reduce migration of opioid-containing leukocytes or stress-induced antinociception either, but we did not present the data because we observed neurotoxicity (e.g., paralysis) at the highest doses. CWS-induced antinociception is mediated exclusively by locally secreted opioid peptides in subcutaneous inflammation. In another paradigm, swim stress has been shown to involve IL-1 receptor activation, but major differences exist between the two models: (1) presence versus absence of inflammation, (2) species (rats vs. mice), (3) type of swim stress (cold vs. warm water), and (4) tests of nociception (Randall-Selitto vs. hot plate). In particular, in our model CWS-induced antinociception cannot be blocked by an antibody against IL-1 or by an IL-1 receptor antagonist, indicating antinociception cannot be blocked by an antibody

To further elucidate the mechanisms of reduced migration of opioid-containing leukocytes, we measured substance P content and NK1 receptor expression in the inflamed paw. Local substance P content increased during CFA-induced inflammation (fig. 3A). Potential sources of substance P are the peripheral sensory neurons and infiltrating leukocytes. In addition to increased substance P amounts, we detected NK1 receptor expression on all infiltrating leukocytes, on neurons, and on endothelial cells (figs. 3B–D), confirming previous studies. While neurogenic inflammation contributes to leukocyte infiltration, it is unclear whether blockade of NK1 receptors on peripheral sensory neurons influences leukocyte recruitment. However, NK1 receptors have previously been shown to enhance leukocyte recruitment by increasing adhesion molecule expression on endothelial cells, by augmenting chemokine production or by directly inducing chemotaxis of leukocytes.

Adhesion molecules (i.e., ICAM-1, selectins, and integrins) have previously been shown to mediate the recruitment of opioid-containing leukocytes, and their blockade can impair peripheral opioid-mediated antinociception during CFA-induced inflammation. In the current study, expression of ICAM-1 on endothelial cells was increased at later stages of inflammation (24 h after CFA; table 2). Neither the CFA-induced up-regulation of

Table 2. Intercellular Adhesion Molecule-1 and Neurokinin-1 Receptor Expression Are Up-regulated at 24 h of Inflammation but Unaltered by Concomitant Neurokinin-1 Receptor Blockade

<table>
<thead>
<tr>
<th></th>
<th>Intercellular Adhesion Molecule 1</th>
<th>Neurokinin-1 Receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninflamed, vessels/section</td>
<td>1.90 ± 0.19</td>
<td>1.72 ± 0.13</td>
</tr>
<tr>
<td>CFA, vessels/section</td>
<td>5.54 ± 0.32*</td>
<td>4.69 ± 0.33*</td>
</tr>
<tr>
<td>CFA + SR140333, vessels/section</td>
<td>4.46 ± 0.30*</td>
<td>4.16 ± 0.34*</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM. *P < 0.05, noninflamed vs. complete Freund adjuvant (CFA) and noninflamed vs. CFA + SR140333, P > 0.05 CFA vs. CFA + SR140333, analysis of variance, post hoc comparison, Student-Newman-Keuls method (intercellular adhesion molecule 1: F = 5.9, neurokinin-1 receptor: F = 4.3; n = 5/group and 3 sections/animal).

Table 3. Neurokinin-1 Receptor Blockade Does Not Influence Local Chemokine or Cytokine Expression at 24 h of Inflammation

<table>
<thead>
<tr>
<th></th>
<th>CXCL1</th>
<th>CCL2</th>
<th>IL-1β</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFA, ng/paw</td>
<td>2.79</td>
<td>0.30</td>
<td>0.39 ± 0.05</td>
</tr>
<tr>
<td>CFA + SR140333, ng/paw</td>
<td>3.10</td>
<td>0.58</td>
<td>0.44 ± 0.04</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM. P < 0.05, differences between chemokines/cytokine, P > 0.05 for drug and drug × chemokines/cytokine, two-way repeated-measures analysis of variance (F = 36.7, n = 6).

CCL2 = CC chemokine ligand 2; CFA = complete Freund adjuvant; CXCL1 = CXC chemokine ligand 1; IL-1β = interleukin-1β.
ICAM-1 nor that of NK₁ receptors on endothelial cells was altered by peripheral NK₁ receptor blockade (fig. 4 and table 2). Previous in vitro studies have demonstrated that substance P increased the expression of ICAM-1 as well as NK₁ receptors. In vivo models of inflammation, the effects of NK₁ receptor antagonists vary between experimental models: They decreased NK₁ receptor but not ICAM-1 expression in a mouse model of pancreatitis. In contrast, they reduced ICAM-1 expression in experimental autoimmune encephalomyelitis. In our model, NK₁ receptor antagonists reduced the recruitment of opioid-containing leukocytes, but they did not alter the expression of ICAM-1 or NK₁ receptors on the inflamed endothelium. We cannot fully exclude the possibility that NK₁ receptor antagonists alter the expression of other adhesion molecules such as selectins or integrins and, thereby, impair peripheral antinociception.

As a second hypothesis, NK₁ receptor antagonists might decrease local chemokine production and thereby impair selective leukocyte recruitment. Substance P has been shown to up-regulate chemokine production in leukocytes and epithelial cells in vitro. In experimental pancreatitis, local chemokine expression was reduced by an NK₁ receptor antagonist. We examined a PMN- and a monocyte/macrophage-specific chemokine in our model (i.e., CXCL1 and CCL2, respectively), and their expression was not altered by NK₁ receptor antagonists (table 3). Multiple chemokines are responsible for PMN and monocyte/macrophage recruitment and alterations in other chemokines might occur after treatment with NK₁ receptor antagonists. Although this possibility cannot be excluded, our previous study demonstrated that PMN-specific chemokines (i.e., CXCR2 ligands) were regulated as a group and did not show relevant differences between individual chemokines.

Taken together, in our model NK₁ receptor antagonists reduce the migration of opioid-containing leukocytes, but this effect does not seem to be mediated through alterations in adhesion molecule expression on endothelial cells or in local chemokine production.

Third, substance P binding to NK₁ receptors on leukocytes might directly induce migration of opioid-containing leukocytes. This migration might be reduced by NK₁ receptor blockade. Several studies demonstrated that NK₁ receptor agonists induce chemotaxis of PMNs and monocytes/macrophages in vitro. Previous studies have shown that PMNs and monocyte/macrophage migration to the site of inflammation is impaired after treatment with NK₁ receptor antagonists. In our model, NK₁ receptor antagonists reduced the recruitment of opioid-containing leukocytes and alterations in other chemokines might occur after treatment with NK₁ receptor antagonists or in NK₁ receptor-deficient mice. In line with these studies, the number of infiltrating macrophages and PMNs as well as of opioid-containing leukocytes was reduced in our model (figs. 2 and 5 and table 4).

In conclusion, we have shown that NK₁ receptor antagonists reduce the recruitment of opioid-containing leukocytes into the inflamed paw and thereby impair opioid-mediated antinociception in CFA inflammation. NK₁ receptor agonists such as substance P seem to directly induce preferential recruitment of opioid-containing monocytes/macrophages while no indirect effects (i.e., alterations in adhesion molecule expression or chemokine production) are observed. Most likely, NK₁ receptor antagonists act directly on NK₁ receptor-expressing, opioid-containing leukocytes, but the effects might also be mediated indirectly through NK₁ receptors on peripheral neurons. Taken together, NK₁ receptor antagonists are important in the recruitment of opioid-con-
taining leukocytes and the generation of peripheral opioid-mediated antinociception. The impairment of endogenous opioid-mediated peripheral analgesia might be an additional explanation for the lack of efficacy of NK1 receptor antagonist in human studies.12

The authors thank Susanne Kotré and Katharina Hopp (both Technicians, Department of Anaesthesiology, Charité, Berlin, Germany) for expert technical assistance.

References

factor inhibit pain by releasing opioids from immune cells in inflamed tissue. Proc Natl Acad Sci USA 1994; 91:4219–23

