Pregnancy Increases Excitability of Mechanosensitive Afferents Innervating the Uterine Cervix
Baogang Liu, M.D.,* Chuanyao Tong, M.D.,† James C. Eisenach, M.D.‡

Background: Labor pain derives primarily from stimulation of afferents innervating the uterine cervix and lower uterine segment. The authors have previously shown that the excitability of these afferents is regulated by sex hormones and test in this study whether pregnancy also alters their excitability.

Methods: After animal care committee approval, Sprague-Dawley rats (nonpregnant, pregnant days 17 and 21) were anesthetized, and two metal rods were placed through the cervix for distension. The right hypogastric nerve was dissected and carefully teased until recording from a single unit was obtained. Spontaneous activity and the response to a graded distension (20–80 g) were recorded for off-line analysis.

Results: A total of 151 fiber units were recorded. Pregnancy was associated with an increase in spontaneous nerve activity in the absence of a mechanical stimulus (median of 0.98 and 1.56 Hz from pregnant days 17 and 21, respectively; compared with 0.45 Hz in nonpregnant; P < 0.01). The proportion of fibers responding to the weakest stimulus (20 g) was significantly greater in pregnant than in nonpregnant animals. The response to graded distension differed significantly among groups, with day 21 > day 17 > nonpregnant.

Conclusions: Afferents that innervate the uterine cervix sprout into this tissue during late pregnancy, and estrogen increases excitability of these mechanosensitive afferents. Here, the authors show that excitability also increases during pregnancy. These data suggest that, close to the onset of labor, there is an increased input to the spinal cord from cervical distension and an increased depolarization of afferent terminals in the cervix, effects that could influence pain and the progress of labor.

Materials and Methods
Animals
After approval by the Animal Care and Use Committee at Wake Forest University School of Medicine, Winston-Salem, North Carolina, three groups of Sprague-Dawley rats (Taconic, Germantown, NY) weighing 200–300 g on the day of experiment were studied: nonpregnant (n = 25), pregnant day 17 (n = 23), and pregnant day 21 (n = 26). The number of rats studied reflected the plan to examine approximately 50 afferents in each group. Nonpregnant rats were housed two per cage, and pregnant rats were housed singly, with a 12–12 h light–dark cycle. The ambient temperature was kept at 22°C, and rats had free access to standard food and tap water.

Surgical Preparation for Hypogastric Nerve Recording
The hypogastric nerve preparation for single-unit recording and controlled uterine cervical distension were performed as previously described.6,7 In brief, on the day of experiment, the rat was anesthetized with inhalation of halothane (2% in oxygen), and the right jugular vein and carotid artery were catheterized for fluid administration and continuous monitoring of arterial blood pressure.
pressure and heart rate. A tracheotomy was performed for mechanical ventilation at 60 breaths/min. A lower abdominal laparotomy was performed via a midline incision to expose the uterus and cervix. The abdominal wall was retracted laterally, and the intestines and uterine body were retracted rostrally and laterally with gauze soaked with mineral oil. Polyethylene tubing was inserted into the urinary bladder for continuous drainage. Under direct vision, two sterilized hollow metal rods were inserted through the cervical ossa. One end was attached to a metal stand for manual distension (20, 40, 60, 80 g), and the other end was connected to a force transducer. Distension was applied for 10 s, with a 3-min interval between distensions. The right hypogastric nerve was identified, and the branch innervating the uterine cervix was carefully separated. Its proximal end was cut at the aortic bifurcation level and draped on a 5 × 10-mm epoxy-covered metal platform covered with warm mineral oil. Under the dissecting microscope, the nerve sheath was carefully removed. The nerve filaments were dissected gradually using titanium tweezers (model 555227F; World Precision Instruments, Sarasota, FL) until single-unit activity was obtained.

Hypogastric Nerve Recording

Single-unit activity was recorded with a unipolar platinum electrode. The activity of the afferent was amplified and processed through an audio amplifier. The single unit was identified initially by examining the waveform and the spike amplitude using a window discriminator at a rapid sweep speed as well as by checking the recorded sound frequency related to each spike activity. Furthermore, the signals were digitized at a sampling rate of 20 kHz and recorded on a computer through an analog–digital interface card for subsequent off-line analysis. An amplitude threshold was set for the recorded action potential of nerve fibers. Single-unit recording was ensured by checking the constancy of the shape and polarity of the displayed spike waveform. Discharge frequency was quantified by using the data acquisition and analysis software and window discriminator (Sciworks 3.0; Datawave Technology, Berthoud, CO).

Units were included, using criteria previously used in the study of these afferents, if they increased activity in response to gentle stroking of the surface of cervix with a glass rod, distending the cervix, or, at the end of the experiment, topical application of bradykinin (10 mg/ml) to the receptive field of afferents by using a cotton-tipped applicator for 3 min, and did not respond to mechanical stimulation of the bladder or surrounding tissues. Spontaneous unit activity was defined as any nerve firing in the absence of stimulation for 1 min.

With window discrimination, we could distinguish up to three fibers with different amplitudes during each trial. The basal (control) discharge rate was computed as the mean number of spikes per second for 1 min before manipulation. For each fiber, the average effect of distension on the fiber’s activity was defined as the discharge rate in the 10-s interval of active distension. The absolute spike response to distension was calculated by subtracting the frequency in the absence of distension to that during distention. Units were classified as previously described as low threshold if they responded to distension of 20 g and high threshold if they did not respond to distension of 20 g.

During fiber recording, halothane concentration was maintained at 1% for stable fiber recording. Body temperature was maintained at 38°C by a heating pad. Pancuronium, 0.6 mg/kg initially and 0.1 mg/kg every 45–60 min, was administered intravenously for muscle relaxation to facilitate nerve exposure and dissection. At the end of experiment, the rat was killed with intravenous sodium pentobarbital.

Drugs

Drugs used and their sources were halothane (Halocarbon Laboratories, River Edge, NJ), pentobarbital sodium (Nembutal; Abbott Laboratories, North Chicago, IL), bradykinin (Sigma Chemical, St. Louis, MO), and mineral oil (Fisher Scientific, Pittsburgh, PA).

Statistical Analyses

Spontaneous activity data were not normally distributed, are presented as median [25th, 75th percentiles], and were analyzed by one-way analysis of variance by ranks. Elicited activity data were normally distributed, are expressed as mean ± SE, and were analyzed by repeated-measures two-way analysis of variance. Chi-square analysis was used to compare afferent unit proportions across groups. The criterion for significance was P < 0.05.

Results

General Properties of Afferents

A total of 151 units from 74 animals were recorded for spontaneous activity and response to uterine cervical distension: 51 units from nonpregnant rats, 49 from pregnant day 17, and 51 from pregnant day 21. There were no differences among experimental groups in rectal temperature, blood pressure, or halothane concentration during recording (data not shown).

Spontaneous Activity

Spontaneous unit activity was determined in all recorded fibers from the three groups. The proportion of units with spontaneous activity by this definition did not differ between nonpregnant (84% of units) and pregnant (88% of units on day 17 and 84% of units on day 21) animals. Pregnancy did have an effect, however, on the magnitude of spontaneous activity. In an analysis of the
total population of fibers, including those with no spontaneous activity, there was a progressive increase in median frequency of spontaneous activity during pregnancy (fig. 1A). This was primarily due to an increase in spontaneous activity in low-threshold afferents (fig. 1B). Similar results were obtained with separate analysis of only units with spontaneous activity, with all groups differing significantly from each other (nonpregnant, 0.67 [0.28, 1.44] Hz; day 17, 1.07 [0.59, 2.41] Hz; day 21, 1.90 [1.03, 3.04] Hz).

Threshold for Elicited Response

Pregnancy was associated with a change in threshold, using the previously defined dichotomy of low- and high-threshold fibers (fig. 2A). We also examined in a secondary analysis the thresholds for the entire population of fibers in each group. The median threshold for elicited neural activity differed among groups by analysis of variance on ranks (P = 0.03) with post hoc testing using the Dunn test compared with nonpregnant control values yielded differences of borderline significance (P = 0.08 for day 17 vs. nonpregnant and P = 0.05 for day 21 vs. nonpregnant; fig. 2B).

Mechanosensitivity

Fibers typically responded to uterine cervical distension in a monotonically increasing fashion with stimulus intensity (fig. 3A). There was a progressive increase in the stimulus response of all fibers studied to uterine cervical distension during pregnancy, with all groups differing in the order nonpregnant < day 17 pregnant < day 21 pregnant (fig. 3B). This reflected an increase in...
the stimulus response in low-threshold fibers (fig. 4A) but not in high-threshold fibers (fig. 4B).

Illustration
To illustrate the effects of pregnancy on phasic uterine contractions, we used the linear regression of the stimulus response function from nonpregnant and day 21 pregnant animals, adding the median spontaneous activity in each group to the calculated y-intercept. This yielded a calculated nerve firing (in Hz) as a function of distension pressure (in g) of nerve firing = 0.07 + 0.0426 * distension pressure for the nonpregnant animal and nerve firing = 2.24 + 2.9051 * distension pressure for the day 21 pregnant animal. With these formulas, we calculated the expected firing of afferents from nonpregnant and pregnant animals using an input function of a sine wave of distension pressure with a baseline of 3 mmHg, peak of 15 mmHg, and frequency of 1/min to simulate intrauterine pressures generated during labor in the rat.8 Figure 5 depicts this input function of pressure and the calculated nerve firing. In addition, we integrated the nerve firing functions to yield the cumulative number of action potentials generated by this pattern of uterine activity in the nonpregnant and pregnant state (fig. 5).

Discussion
Pregnancy exerts a profound effect on the afferents innervating the lower uterine segment and cervix of the rat. Spontaneous and distension-induced activity increases more than threefold from the nonpregnant to the term pregnant animal, and cumulative nerve firing in our simulation based on these observations shows more than a sixfold increased total activity in only 15 min, with continued divergence over time. These fundamental observations generate several hypotheses regarding the role of uterocervical afferents in pain of labor and obstetric outcome.

The current results complement anatomical studies that suggest that physiologic changes in late pregnancy would enhance pain during labor. Although there is a relative denervation of the uterine fundus during pregnancy, afferents to the lower uterine segment and cervix branch dramatically in late pregnancy in rodents and humans.10,11 Assuming that generator potentials would summate at regions of convergence of such branching, this phenomenon could lead to increased sensitivity to peripheral stimulation, including mechanical distension, and could partly underlie the increased response to distension observed in the current study.

Regardless of the cause, the current neurophysiologic data would predict that nociception from uterine cervical distension would increase in late pregnancy compared with the nonpregnant condition, in agreement with clinical and laboratory observations. Therefore, the threshold for behavioral response to uterine distension...
PREGNANCY INCREASES UTERINE NERVE EXCITABILITY

Increased excitability of uterine cervical afferents. There are substances released during the cervical ripening process. These substances reflect peripheral sensitization of afferent terminals from uterocervical afferents in late pregnancy in the current study. The increased excitability of uterine cervical afferents in late pregnancy predicted by studies suggest that the increased spontaneous activity and higher response to distension in uterine cervical afferents in late pregnancy in the current study may reflect peripheral sensitization of afferent terminals from substances released during the cervical ripening process.

Hormonal changes in late pregnancy could also trigger increased excitability of uterine cervical afferents. There is a functional withdrawal of progesterone just before the onset of labor, leading to unopposed estrogen signaling. Lumbosacral afferent neurons which innervate the uterus express estrogen receptors, and estrogen increases their synthesis of substance P. We previously showed that tonic estrogen exposure increases excitability of hypogastric afferents and their response to uterine cervical distension in nonpregnant female rats. The cumulative firing of the hypothetical afferent over the 15-min period diverges over time, with greater activity in the pregnant than in the nonpregnant animal.

Fig. 5. Illustration of the relation between uterine cervical distension force and hypogastric nerve firing. A) Intrauterine pressure increases in a cyclical fashion with a frequency of approximately 1/min in the rat, resulting in peak pressures of approximately 15 mmHg. Based on the spontaneous activity and stimulus–response relations observed in the current study, this increase in uterine cervical distension pressure results in nerve activity that is greater in the 21-day-pregnant rat (B, thick line) than in the nonpregnant rat (B, thin line). The cumulative firing of hypogastric afferents in late pregnancy is thought to be controlled and modulated by a variety of factors, including increased local release of cytokines, prostaglandins, and nitric oxide. Many of these products are released by macrophages, which infiltrate the cervix just before the onset of labor and play a key role in cervical ripening. Cytokines known to increase spontaneous activity of somatic nociceptive afferents and sensitize them, leading to reduced threshold to mechanical stimuli. Prostaglandins regulate the excitability of somatic nociceptive afferents and primary sensory neurons. Nitric oxide may also act in concert with prostaglandins to induce peripheral sensitization. Taken together, these studies suggest that the increased spontaneous activity and higher response to distension in uterine cervical afferents in late pregnancy in the current study may reflect peripheral sensitization of afferent terminals from substances released during the cervical ripening process.

Acknowledgments: We gratefully acknowledge the technical assistance of S. M. Soto, M.D., M.S., and the help of C. L. B. Brown, M.A.

References:\n1. Anesthesiology, V 108, No 6, Jun 2008
labor and that their manipulation should be examined in regulation of cervical ripening.

There are several limitations to the current study in addition to the species difference between rats and humans. All experiments occurred during general anesthesia and acute injury to the hypogastric nerve, the peritoneal cavity, and the lower uterine segment and cervix, and these conditions could alter the functional properties of the recorded afferents. In addition, we used a mechanical stimulus search paradigm, and it is not clear that the sample of afferents we obtained reflects the population of afferents, which innervate these structures. Finally, we measured neither nociception from the stimulus applied nor the release of neuropeptides into the lower uterine segment or cervix from the stimulus, so we can for the moment only speculate on the functional consequences of the changes in nerve activity we observed.

In summary, pregnancy increases spontaneous activity as well as the response to uterine cervical distension in afferents that innervate the lower uterine segment and cervix. Some aspects of this increased excitability occur in a progressive manner from day 17 to day 21 of pregnancy in the rat, and some are restricted to high-threshold afferents. The cause and functional consequences of this increased excitability are under study, but these results suggest that there is a large effect of late pregnancy on uterine cervical afferent excitability, which could carry important implications regarding pain during labor and the role of these afferents in the cervical ripening, and hence labor, process.

References


Anesthesiology, V 108, No 6, Jun 2008