Severe Brachial Plexopathy after an Ultrasound-guided Single-injection Nerve Block for Total Shoulder Arthroplasty in a Patient with Multiple Sclerosis

Matthew D. Koff, M.D., M.S.,‡ Jeffrey A. Cohen, M.D.,† John J. McIntyre, M.D.,‡ Charles F. Carr, M.D.,§ Brian D. Sites, M.D.¶

Anesthesiology 2008; 108:325–8 Copyright © 2008, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

CASE REPORTS

Anesthesiology 2008; 108:252–8

Deloitte the known benefits of regional anesthesia for patients undergoing joint arthroplasty, the performance of peripheral nerve blocks in patients with multiple sclerosis (MS) remains controversial. MS has traditionally been described as an isolated disease of the central nervous system, without involvement of the peripheral nerves, and peripheral nerve blockade has been suggested to be safe.₁,² However, careful review of the literature suggests that MS may also be associated with involvement of the peripheral nervous system, challenging traditional teachings. There is a paucity of evidence with regard to safety in using peripheral nerve regional anesthesia in these patients. This makes it difficult to provide adequate "informed consent" to these patients. This case report describes a patient with MS who sustained a severe brachial plexopathy after a total shoulder arthroplasty during combined general anesthesia and interscalene nerve block.

Case Report

A 65-yr-old right-hand-dominant man, American Society of Anesthesiologists physical status III, presented for a right total shoulder arthroplasty. The patient’s medical history was significant for hypothyroidism, benign prostatic hypertrophy, mitral valve prolapse, and MS. His medications included 40 mg pravastatin by mouth daily, 75 μg levodopa by mouth daily, and 15 mg oxybutynin (extended release) by mouth daily. The patient was allergic only to oysters, which had caused anaphylaxis in the past. Although without clinical changes for 2 yr, his MS was remarkable for bilateral lower extremity weakness (walker needed for ambulation) and the requirement for self–urethral catheterization.

After informed consent, the patient underwent an interscalene nerve block and general anesthetic. In the preanesthetic block room, sedation was provided with 50 μg intravenous fentanyl and 2 mg intravenous midazolam. An ultrasound-guided ‘single-shot’ injection using an in-plane needle approach and nerve stimulation was performed. The injection was made at the mid-neck level at the nerve roots of the brachial plexus. The needle direction was in reference to the middle scalene muscle from the lateral toward medial direction. Three injections were made starting laterally on C5, then anteriorly on C5, and then medially to C5. The injections were made to create circumferential spread around the roots of the brachial plexus. The injection was performed as previously described.³,⁴ A 50-mm, 22-gauge b-bevel (B. Braun Medical, Bethlehem, PA) was inserted in plane with the ultrasound beam during visualization of the roots of the brachial plexus on short axis. The needle (stimulating at 0.45 mA, 0.1-ms pulse duration, 2 Hz) was directed until it approached the outer edge of the C5 nerve root. The needle was not seen to penetrate the epineurium by our ultrasound image (fig. 1). After the demonstration of biceps contraction, an injection of 50 ml bupivacaine (0.5%), 1:400,000 epinephrine, and 50 μg clonidine was injected using a 10-ml Luer-Lok controlled stroke syringe. The local anesthetic was noted to surround the C5–C6 nerve roots. The needle was repositioned three times to generate complete coverage of the C5–C6–C7 roots. During the procedure, the patient experienced no discomfort, and there was no resistance to injection. The block was checked for success by the senior regional resident. This patient was noted to have partial sensory (to ice) blockade over the anterior shoulder (axillary nerve distribution C5) and partial motor (by strength testing) and sensory (to ice) blockade of the musculocutaneous nerve distribution 10 min after regional blockade.

After the induction and maintenance of general endotracheal anesthesia, the patient was placed in the beach chair position. Consistent with the sitting position, an episode of hypotension (77/46 mmHg, mean arterial pressure 56 mmHg) was noted after induction and patient repositioning to the sitting position. The patient initially required a total administration of 2 l of lactated Ringer’s solution and a total of 15 mg epidural (in 5-mg dosing increments) to return to a mean arterial pressure greater than 70 mmHg. Intraoperatively, the patient’s temperature ranged from approximately 35 to 36.4 centigrade. The arm was held in place by the Spider Arm Retractor (Tenet Medical Engineering, Calgary, Alberta, Canada). A Zimmer anatomic total shoulder system was used (Zimmer Inc., Warsaw, IN). During placement of the glenoid component, the arm was positioned in 35° of external rotation and 45° of abduction. The estimated blood loss was 400 ml, and the patient received 2,800 ml lactated Ringer’s solution. Surgical time was 3 h 45 min. After emergence in the postanesthesia recovery unit, the patient was noted by nursing staff to have a dense motor and sensory block and was also noted to be comfortable for the first hour. The patient then began to report right arm pain that was described as burning in quality. It was rated as 5 out of 10 on a visual analog scale. A neurologic examination was performed by the operating orthopedic resident within 4 h postoperatively. At that time, the...
The patient was again noted to have a dense motor and sensory block of the operative extremity, as would be expected 10 h after a successful regional blockade.

On postoperative day 1, the patient continued to have shoulder pain with a persistent flaccid motor block of his entire right upper extremity. This pain was exacerbated by shoulder and arm movement and not by neck movement or a Valsalva maneuver, as can be seen in cervical radiculopathy. A consultation by the neurology service on postoperative day 2 found sensation to temperature throughout dermatomes C4–T1, with absent light touch sensation in C6–T1. Vibration and joint position perception were absent throughout. A magnetic resonance image of the chest was performed on postoperative day 3, which demonstrated postsurgical changes without any evidence for compressive or avulsive pathology. However, it was diagnostic for brachial neuritis (fig. 2). High-dose methylprednisolone was initiated to treat a presumed autoimmune brachial neuritis. An electromyogram performed on postoperative day 4 showed loss of the median and ulnar F waves. In addition, there was no voluntary recruitment of the following muscles: deltoid, triceps, biceps, brachioradialis, wrist extensors, and first dorsal interosseous. At this time, there was no evidence of active denervation in any of the muscles examined. On postoperative day 11, a complete paresis of the patient’s entire arm persisted; an electromyogram demonstrated active denervation of all muscles and no voluntary motor recruitment. This study demonstrated low-amplitude compound muscle action potentials of the median and ulnar motor nerves. Median ulnar and radial sensory nerve action potentials were absent. Electromyographic examination revealed active denervation in all of the muscles previously examined, with no voluntary motor recruitment (table 1).

A follow-up electromyogram 3 months from the date of surgery showed improvement. There was reduced voluntary motor recruitment with evidence of reinnervation in all of the muscles that were previously examined. The patient’s unaffected limbs were tested, and studies of the radial and sural sensory nerves and ulnar and peroneal motor nerves with F waves yielded normal results. Nerve fiber loss can still be significant despite normal nerve conduction study results. Therefore, a normal electromyogram does not completely rule out subclinical peripheral neuropathy.

At 8 months postoperatively, the patient continued to have significant range of motion and strength deficits. His distal hand function remained limited secondary to stiffness from the prolonged neurologic recovery. Range of motion at the wrist, metacarpophalangeal joints, proximal interphalangeal joints, and distal interphalangeal joints were significantly limited, with approximately 50% loss of motion at each level. The patient also continued to have visible isolated muscle atrophy of proximal musculature, including the pectoralis major and pos-

![Fig. 1. Interscalene nerve block in our patient with multiple sclerosis. Image shows the C5–C7 ventral roots of the right brachial plexus. Arrows indicate the needle in plane with the ultrasound beam. The needle tip was completely visualized throughout the procedure. L indicates local anesthetic completely surrounding nerve roots, i.e., “donut sign.”](image1)

![Fig. 2. (A) T2 coronal image demonstrating increased signal intensity of the right brachial plexus (arrow). (B) Sagittal T1 image demonstrating swelling of the brachial plexus (arrows) posterior and superior to the subclavian artery flow void. (C) Sagittal T2 image demonstrating increased girth and increased signal of the brachial plexus (arrow) posterior and superior to the subclavian artery flow void.](image2)
crease the risk of a double-crush phenomenon. In con-
trast to a spinal or epidural block, a peripheral nerve
block in MS patients is theoretically attractive because
of the neural pathology is presumed to be located in the
central nervous system. However, this association seems
to be incomplete and is based on the fact that the clinical
involvement of the peripheral nervous system in MS
patients has traditionally been ignored by modern
textbooks. This is despite the fact that the description
of this link dates back a half century. Importantly,
this conventional teaching is also present in the anes-
thesia literature. 1,2,10–13 Careful assessment of the lit-
terature reveals that multiple recent studies have
shown the existence of subclinical peripheral neurop-
avathy in some patients with MS.14–18 Pogorzelski et al.14
noted both sensory and peripheral motor nerve
lesions of a demyelinating-axonal character. They also
noted that sensory abnormalities were more pro-
nounced than motor ones. Another study found elect-
rophysiologic abnormalities in the 14.7% of all per-
ipheral nerves examined (n = 244) in patients with
MS.17 This is well above the reported prevalence of
2.4% in the general population. In the elderly, the
prevalence is reported to be as high as 8%, mostly due
to diabetes mellitus.19 Hughes et al.20 described an
association of a demyelinating peripheral neuropathy
in MS patients. Other inflammatory demyelinating dis-
ases exist that have both central and peripheral com-
ponents, such as chronic inflammatory demyelinating
polyneuropathy.21

Patients with underlying peripheral neurologic disor-
ders may be more susceptible to nerve injury with the
use of regional techniques.22 Despite testing modalities
such as electromyography and magnetic resonance im-
aging, it may be difficult to differentiate between multi-
ple etiologies, including direct trauma during the re-
gional procedure, neurotoxicity from local anesthetics
(and additives), and patient positioning, such as extreme
abduction and external rotation, which has been impli-
cated in surgical stretch injury of the brachial plexus. All
of these could occur in a patient undergoing total should-
er replacement. The other confounding variable in di-
agnosing the etiology of a postoperative neurologic de-
terioration is that the clinical course of MS may be
exacerbated from many nontraumatic-related reasons,
such as hyperthermia, electrolyte abnormalities, stress,
and pain.

Brachial plexus injury after total shoulder arthroplasty
has been estimated at 2.8%.23 To our knowledge, this is
the first report of an IBN after total shoulder replacement
in a patient with MS. This is also the first report of IBN in
a patient using an ultrasound-guided regional anesthesia
technique. Brachial plexus injury after interscalene
nerve blockade has been previously described.24 IBN has
also been reported to occur in patients during treatment
for MS.18 IBN is a well-recognized clinical syndrome
characterized by brachial pain followed by patchy atro-
phy of muscles in the shoulder girdle and arm innervated
by individual branches of the brachial plexus.25–27 Post-
surgical IBN has not been widely recognized since Par-
sonage and Turner’s original description.27

In summary, we report a case of a severe brachial
plexus injury that occurred in a patient with MS after a

Table 1. Needle Electromyography of Patient on Postoperative Day 11

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Spontaneous Activity</th>
<th>Volitional Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fibrillations</td>
<td>+ Waves</td>
</tr>
<tr>
<td>Deltoid, right</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Biceps, right</td>
<td>1+</td>
<td>1+</td>
</tr>
<tr>
<td>Triceps, right</td>
<td>1+</td>
<td>1+</td>
</tr>
<tr>
<td>Brachioradialis, right</td>
<td>1+</td>
<td>1+</td>
</tr>
<tr>
<td>FDI, right</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FPL, right</td>
<td>1+</td>
<td>1+</td>
</tr>
<tr>
<td>EDC, right</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trapezius, right</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

EDC = extensor digitorum complex; FDI = first dorsal interossei; FPL = flexor pollicis longus.

terior deltoid. His final diagnosis was an inflammatory brachial neuritis (IBN).

Discussion

Multiple sclerosis is described as a chronic disease of
the central nervous system that usually begins in young
adults. Pathologically, MS is characterized by multiple areas
of central nervous system white matter inflammation, de-
myelination, and glial scarring or sclerosis. The clinical
course of MS varies from a benign, largely symptom-free
disease to a rapidly progressive and disabling disorder. The
etiology of MS is likely due to autoimmune mechanisms,
possibly triggered by infectious and other environmental
factors in genetically susceptible individuals.6

Controversy exists in providing regional anesthesia to
patients with neurologic diseases. The “double-crush”
phenomenon suggests that patients with preexisting
nerve compromise may be more susceptible to injury at
another site when exposed to a secondary injury.7 The
performance of a neuraxial technique in patients with
preexisting central nervous system disorders may in-
crease the risk of a double-crush phenomenon.8 In con-
trast to a spinal or epidural block, a peripheral nerve
block in MS patients is theoretically attractive because
the neural pathology is presumed to be located in the
central nervous system. However, this association seems
to be incomplete and is based on the fact that the clinical
involvement of the peripheral nervous system in MS
patients has traditionally been ignored by modern
textbooks. This is despite the fact that the description
of this link dates back a half century.9 Importantly,
this conventional teaching is also present in the anes-
thesia literature.1,2,10–13 Careful assessment of the lit-
terature reveals that multiple recent studies have
shown the existence of subclinical peripheral neurop-
avathy in some patients with MS.14–18 Pogorzelski et al.14
noted both sensory and peripheral motor nerve
lesions of a demyelinating-axonal character. They also
noted that sensory abnormalities were more pro-
nounced than motor ones. Another study found elect-
rophysiologic abnormalities in the 14.7% of all per-
ipheral nerves examined (n = 244) in patients with
MS.17 This is well above the reported prevalence of
2.4% in the general population. In the elderly, the
prevalence is reported to be as high as 8%, mostly due
to diabetes mellitus.19 Hughes et al.20 described an
association of a demyelinating peripheral neuropathy
in MS patients. Other inflammatory demyelinating dis-
ases exist that have both central and peripheral com-
ponents, such as chronic inflammatory demyelinating
polyneuropathy.21

Patients with underlying peripheral neurologic disor-
ders may be more susceptible to nerve injury with the
use of regional techniques.22 Despite testing modalities
such as electromyography and magnetic resonance im-
aging, it may be difficult to differentiate between multi-
ple etiologies, including direct trauma during the re-
gional procedure, neurotoxicity from local anesthetics
(and additives), and patient positioning, such as extreme
abduction and external rotation, which has been impli-
cated in surgical stretch injury of the brachial plexus. All
of these could occur in a patient undergoing total should-
er replacement. The other confounding variable in di-
agnosing the etiology of a postoperative neurologic de-
terioration is that the clinical course of MS may be
exacerbated from many nontraumatic-related reasons,
such as hyperthermia, electrolyte abnormalities, stress,
and pain.

Brachial plexus injury after total shoulder arthroplasty
has been estimated at 2.8%.23 To our knowledge, this is
the first report of an IBN after total shoulder replacement
in a patient with MS. This is also the first report of IBN in
a patient using an ultrasound-guided regional anesthesia
technique. Brachial plexus injury after interscalene
nerve blockade has been previously described.24 IBN has
also been reported to occur in patients during treatment
for MS.18 IBN is a well-recognized clinical syndrome
characterized by brachial pain followed by patchy atro-
phy of muscles in the shoulder girdle and arm innervated
by individual branches of the brachial plexus.25–27 Post-
surgical IBN has not been widely recognized since Par-
sonage and Turner’s original description.27

In summary, we report a case of a severe brachial
plexus injury that occurred in a patient with MS after a

Anesthesiology, V 108, No 2, Feb 2008
Ethanol-induced Coma after Therapeutic Ethanol Injection of a Hepatic Cyst

Anne Wernet, M.D.,* Annie Sibert, M.D.,† Catherine Paugam-Burtz, M.D.,*, Arnaud Geoffroy, M.D.,† Jacques Belghiti, M.D.,§ Valérie Vilgrain, M.D.,|| Jean Mantz, M.D., Ph.D.#

HEPATIC cyst is a common congenital malformation, the incidence of which varies from 0.1% to 4.5%.1,2

Hepatic cysts are most often asymptomatic. Clinical symptoms comprise abdominal compression revealed by abdominal pain, gastric satiety, vomiting, biliary compression with jaundice, dilatation of biliary ducts or cholestasis, and vascular compression of the inferior vena cava or hepatic vessels.3 Cyst sclerotherapy may be required in such cases, as well as in intracystic hemorrhage. Sclerotherapy is usually performed by percutaneous ethanol injection in situ into the cyst. Such therapy is currently recommended for the treatment of symptomatic hepatic cyst, because of its efficiency and the absence of reported severe complications.4 Here, we report the original case of a patient who demonstrated ethanol-induced coma requiring mechanical ventilation after ethanol injection of a symptomatic hepatic cyst.

References

Case Report

A 69-yr-old woman (168 cm, 65 kg) was admitted to the recovery room after hepatic cyst injection of a hepatic cyst performed during general anesthesia. Her medical history included arterial hypertension. Medication was bisoprolol. She reported no alcohol consumption. Intracystic hemorrhage of a 22 × 20 × 15-cm hepatic cyst located to the right lobe occurred 3 weeks before admission and led to a decision to treat the cyst by in situ ethanol injection. General anesthesia was provided by continuous infusion of intravenous propofol while the patient was spontaneously breathing an oxygen–air mixture (6 l/min; fraction of inspired oxygen [FIO₂], 0.5) delivered via a facemask tightly connected to the face. The patient was monitored with an electrocardioscope, a noninvasive blood pressure device, a pulse oximeter, and an end-tidal carbon dioxide measurement device. The procedure was performed by an experienced radiologist, under sonographic guidance. Cystic puncture was performed with a pigtail catheter, and 3,500 ml fluid was evacuated. Postevacuation opacification ruled out communication between the cyst and the biliary tree, and 240 ml ethanol, 95%, was injected into the cyst cavity. The patient was then positioned alternately on left and right lateral decubitus to allow ethanol to reach the maximum area of the cyst cavity. Fifty minutes later, the same quantity of liquid was removed from the cyst, and the procedure ended uneventfully. The total dose of propofol delivered to the patient was 210 mg. No additional anesthetic or opioid was administered during the procedure. The patient was able to properly respond to verbal command and was discharged to the postanesthesia care unit. Shortly after arrival in postanesthesia care unit, the patient developed lethargy and became unresponsive. Her breath smelled of alcohol. Consciousness rapidly deteriorated and was followed by a coma scored as 3 on the Glasgow Coma Scale. The trachea was intubated, and mechanical ventilation was initiated (FIO₂, 0.4; tidal volume, 650 ml; respiratory rate, 12 breaths/min). An ethanol-induced coma was suspected and confirmed by measurement of the patient’s blood alcohol level, which was 3.10 g/l. The patient progressively recovered satisfactory consciousness and was extubated 11 h after the procedure. Her ethanol blood levels were 1.88 g/l at hour 7 and 0.27 g/l at hour 15 after the procedure. The patient was discharged uneventfully from the institution 2 days later.

Discussion

We report here a massive ethanol intoxication leading to coma after ethanol sclerosis of a hepatic cyst. To our knowledge, this is the first description of severe ethanol-induced coma after ethanol injection of a hepatic cyst.

Mild alcoholemia-related clinical signs after hepatic cyst alcoholization have been scarcely published, and no alcoholemia-related morbidity has been described. Maximal ethanol blood levels up to 1.02 g/l have been reported 1 h after the procedure.⁵,⁶ Hepatic cysts are avascular tumors. Systemic absorption of ethanol may therefore have occurred via two pathways. At first, ethanol could have entered biliary ducts and then the gut via transmural absorption by mesenteric blood vessels. However, the demonstration of absence of communication between the hepatic cyst and biliary ducts after opacification likely rules out such a scenario in our case. Similarly, the delayed onset of symptoms, with respect to the time of ethanol administration, is hardly consistent with an accidental vascular injection. More likely, ethanol was directly absorbed through the cyst wall formed by an epithelium which resembles biliary epithelium and a stroma, made of a thin layer of connective tissue.⁷ The giant size of the cyst, the large volume of ethanol used,⁸ and the long time in contact surely contributed to this unusually high absorption rate. The alcoholic smell of the patient’s breath was rapidly detected postoperatively, supporting ethanol as the cause of the coma. The diagnosis was further confirmed by measurement of the ethanol blood level. The rapid decrease in ethanol blood level after the procedure was consistent with the fact that excessive ethanol absorption had occurred both intraoperatively and in the early postoperative period.

Conclusion

Ethanol-induced coma must be considered in the absence of recovery, or deterioration of consciousness after apparently normal awakening, after ethanol injection of a hepatic cyst performed during general anesthesia. Anesthesiologists as well as radiologists should be aware of this rare but potentially life-threatening complication. A limited volume of injected ethanol is warranted. Ethanol levels should be assessed in the early postoperative stage.

References