To the Editor—The recent article by Thille et al.1 and the accompanying editorial by Rouby2 discuss the effects of positive end-expiratory pressure (PEEP) on pulmonary recruitability in patients with adult respiratory distress syndrome (ARDS). Thille et al. found that alveolar recruitment was similar in pulmonary and extrapulmonary ARDS and concluded that PEEP levels should not be determined based on cause of ARDS.3 However, the type of ARDS could not be classified in 37% of the patients in their retrospective study,1 an important point that is further discussed in Rouby’s editorial.2 In the study by Thille et al., the response to PEEP was assessed by pressure-volume curves only, and the effect of PEEP on oxygenation is not reported.

More than 30 yr ago, we described the variable effect of PEEP on oxygenation in patients with ARDS.3,4 We found that both the short-term and the long-term effects of PEEP on oxygenation response in patients with sepsis were statistically smaller compared with that in patients without sepsis, and we concluded that ARDS associated with sepsis seems to be the result of a more severe pulmonary insult.3 In a subgroup of trauma patients, we found again that the improvement in oxygenation after the application of PEEP in patients who developed sepsis was significantly smaller than that of patients without sepsis and without lung contusion.4

As imperfect as they are by today’s standards, these two very old studies do have relevance to the ongoing discussion about the effectiveness of pulmonary recruitment in ARDS because, in contrast to Thille et al.’s findings, they support the view that the effectiveness of PEEP does depend on the etiology of ARDS. It is unfortunate that for too many years we have not made much progress in better defining the various subgroups of ARDS. The clinician at the bedside is still left with one option only, namely, apply PEEP and assess its consequences. In fact, the response to PEEP may help in making the diagnosis.

Azriel Perel, M.D., Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel. perelao@shani.net

References

(accepted for publication July 12, 2007.)
References

In Reply—We thank Dr. Perel for his interest in our article.1 He raises the issue of the influence of sepsis on positive end-expiratory pressure (PEEP) response in terms of oxygenation in patients with adult respiratory distress syndrome. Based on his own studies published in the late 1970s,2,3 he indicates that their result supports the concept that the cause of adult respiratory distress syndrome, or at least the presence of sepsis, influences the effectiveness of PEEP. He also suggests that the effect of PEEP on oxygenation may be part of a diagnostic test to determine whether adult respiratory distress syndrome is septic.

In our study, we did not directly address the points raised and try to reproduce these effects, for several reasons. First, Dr. Perel used small levels of PEEP with no standardization, making it difficult to reproduce these results. Second, we do not have systematic measurements of oxygenation at every level tested or assessment of the precise criteria for defining “sepsis” exactly at the time when the curves were performed. We do not think, however, that this is the right approach for at least two reasons. Based on the last 15 yr literature on PEEP, it has become clear that if PEEP is important, it is not because of its effects on oxygenation, but mainly because of its effects on lung recruitment and by making ventilation more homogeneously distributed.4 Arterial oxygenation has many drawbacks as a pure indicator of recruitment,5,6 and we have focused our more recent research on recruitment rather than oxygenation, mainly for this reason. The differences Dr. Perel described many years ago could be entirely explained by hemodynamic reasons independent of recruitment and could thus be misleading for clinicians. In addition, what we have shown is that there is no a priori difference in terms of PEEP-induced recruitment whatever the origin of adult respiratory distress syndrome.1 In other words, the clinician has to look for the individual effect of PEEP and not base the administered therapy on a priori criteria. We think this is an important message for today’s clinicians.

Arnaud W. Thille, M.D.,* Laurent Brochard, M.D. *Henri Mondor Hospital, University of Paris XII, Créteil, France. arnaud.thille@wanadoo.fr

References

To the Editor—We thoroughly enjoyed reading “A Tale of Two Paintings.” However, the article presents one misleading—all though minor—detail: it states that sculptor John Quincy Adams Ward (1830–1910) “created the Ether Monument.”1 Although Adams Ward sculpted the Good Samaritan group atop the Monument and the four bas-reliefs on the base, he did not design the Monument. Henry Van Brunt (1836-1903), of the Ware and Van Brunt architectural firm (Boston, MA), is considered the Monument’s architect; the letter he wrote to Adams Ward, asking him to sculpt these pieces, included his early sketch of the Monument.2

There are, however, other individuals who might have contributed to the Ether Monument’s design. William Ware (1832–1915), Van Brunt’s partner, wrote in the 1866 Harvard Yearbook that his activities included the design of the Ether Monument. It is not certain whether he was referring to himself personally or to his firm with Van Brunt. John La Farge (1835–1910), a painter and friend of Van Brunt, may also have had a hand in designing the Ether Monument. In the 1970s, La Farge’s grandson encountered sketches resembling the Monument and, despite some slight differences between the drawing and the Monument, surmised that his grandfather might have influenced the monument’s design.2

Rafael A. Ortega, M.D.,* Dina H. Hafez, B.A. *Boston University School of Medicine, Boston, Massachusetts. ortega@bu.edu

References

(Received for publication August 8, 2007.)
The Use of Simulation Education in Competency Assessment: More Questions than Answers

To the Editor.—With great interest many anesthesia educators have read three manuscripts in previous issues of ANESTHESIOLOGY. Morgan, a well-known and respected researcher in simulation education, and her coauthors presented a thoughtful description of the use of simulation in the evaluation of teamwork in obstetrical practice. However, in light of their conclusions that the “study does not support the use of Human Factors Rating Scale for assessment of obstetrical teams” and recommended limited use of the Global Rating Scale, taken along with Murray and Enarson’s reflective editorial on the difficulties of teamwork and communication skills assessment, I fear that some anesthesia educators might be tempted to throw the newly born discipline of “simulation based assessment” out with the proverbial bathwater.

Morgan et al.’s investigation raises several issues that need to be addressed in light of our urgent need to develop authentic teaching and assessment of clinical competency in anesthesia. The most pressing is our need for reliable and valid performance assessment tools used in anesthesia education, training, and practice.

Morgan et al. found the Human Factors Rating Scale and Global Rating Scale assessment tools of limited reliability in the obstetrical setting; however, they do not further examine the sources of variance in the reliability other than from the raters themselves. Although the number of raters, the number of items, and the occasions of testing seem to be sufficient, we have no definitive analysis of this. Classic Test Theory and the use of interrater reliability and intra- and interclass correlations for diagnosis of measurement error does not provide a view of the relative importance or interactions of these and other variances sources. Modern Test Theory, specifically Generalizability Theory, provides an analysis of multiple sources of variance and determination of optimal sampling not only for raters but also for subjects, items, and occasions of testing. In this investigation, the nonconcordance of the correlations of both Human Factors Rating Scale and Global Rating Scale suggest that something else is going on here. It could be the result of nonparallel scenarios, lack of rater training, or (more significantly) faulty construct validity of the Human Factors Rating Scale and Global Rating Scale for the anesthesia Crisis Resource Management trait. However, we do not know from this report.

On reviewing of the original development of the Human Factors Rating Scale and its 2000 revision, we still do not have formal psychometric analysis of its construct validity and factor status “due to limited sample size.” Although its authors claim that the items cluster around “team roles, authority/command structure, stress recognition and organizational climate,” these highly complex behaviors warrant more formal factor analysis before general use. We as anesthesiologists would not use a new clinical test without knowing the measure of its specificity and sensitivity; we should be equally rigorous with the degree of validity and reliability in high-stakes testing and use of resource-intensive instruction. Modern Test Theory offers many advantages necessary for the authentic assessment of complex cognitive, technical, and behaviors skills in simulation-based education and performance assessment.

Alice A. Edler, M.D., M.A., M.P.H., Stanford University School of Medicine, Stanford, California. edlera@stanford.edu

References
2. Murray D, Enarson C: Communication and teamwork: Essential to learn but difficult to measure. ANESTHESIOLOGY 2007; 106:895–6
8. Sexton J. Operating Room Management Attitudes Questionnaire, technical report 00-2. Austin, University of Texas at Austin, 2000.2
Hyperoxia-induced Decrease in Organ Blood Flow

To the Editor:—In their article regarding the effects of hyperoxia on tissue perfusion, Forkner et al.1 conclusively stated that administration of high oxygen concentration augments tissue oxygenation and produces no adverse effects on tissue oxygenation.

Forkner et al. tried to convince readers that Iscoe et al.’s position2 that the hyperventilation induced by hyperoxia as a result of the Haldane effect would lead to arterial hypocapnia and, hence, vasoconstriction in certain vascular beds, including those in brain, is not correct. Based on findings of very old studies, Forkner et al. also argued that during hyperoxia blood flow is not reduced enough to offset the higher oxygen content, and oxygen delivery is enhanced. This argument is not correct. A previous human study has shown that the magnitude of a decrease in cerebral blood flow is much more profound than that of an increase in arterial oxygen content.3 In that study, for example, the arterial oxygen content was 18 ml/dl and cerebral blood flow was 54 ml · 100 g⁻¹ · min⁻¹ at baseline, and after breathing 100% oxygen at 1 atmosphere absolute, the arterial oxygen content increased by 13.4% but the cerebral blood flow decreased by 33%, so the cerebral oxygen delivery decreased to 7.3 ml · 100 g⁻¹ · min⁻¹ (20.7 ml/dl oxygen content × 36 ml · 100 g⁻¹ · min⁻¹), a 25% decrease in cerebral oxygen delivery. In addition, the partial pressure of arterial carbon dioxide decreased by 3 Torr with the administration of 100% oxygen. When hypocapnia was corrected by adding carbon dioxide to 100% oxygen, decreased cerebral blood flow was restored by only 8%. Although the role of hyperoxia-induced hypocapnia on decreases in cerebral blood flow may not be great, the independent cerebral vasoconstrictive effect of hyperoxia is too great in magnitude to be ignored. A hyperoxia-induced decrease in cerebral blood flow would cause a rightward shift of cerebral blood flow-perfusion pressure relationship line, so that cerebral blood flow would be much lower at a given perfusion pressure.

By employing laser Doppler velocimetry for the measurement of retinal blood velocity and fundus imaging with the Zeiss retinal vessel analyzer for the assessment of retinal vessel diameter, another previous human study4 showed that hyperoxia by breathing greater than 92% oxygen decreases retinal blood velocity and retinal blood flow by 60% each and decreases retinal vessel diameter by 15%, suggesting that the decrease in retinal blood flow is mainly the result of decreased cerebral blood flow rather than the retinal vessel vasoconstriction. The decrease in retinal blood flow during hyperoxia could contribute to ischemic retinopathy when combined with increased intraocular pressure5 during prone spine surgery.

A clinical study has shown that breathing 100% oxygen reduces coronary blood flow velocity by 20% and increases coronary vascular resistance by 23% in patients with coronary artery disease and that vitamin C reverses this effect, suggesting that these changes are medi-
ated by an oxidative stressor acting on the coronary microcirculation.6 A hyperoxia-induced decrease in coronary microcirculatory blood flow in patients with coronary artery stenosis can be detrimental. To determine whether the routine use of high inspired oxygen concentration during the perioperative period alters the incidence of surgical site infection in a general surgical population, a double-blind, randomized controlled trial was conducted.7 The incidence of surgical site infection was significantly higher (25%) in the group receiving inspired oxygen concentration of 80% than in the group with inspired oxygen concentration of 35% (11.3%). This is further evidence that does not support the argument of Forkner \textit{et al.}

Supplemental oxygen benefits patients who would otherwise suffer hypoxia while breathing room air. However, in this situation, supplemental oxygen would not induce hyperoxia. Forkner \textit{et al.} made no distinction between supplemental oxygenation and the administration of high oxygen concentration.

The effect of hyperoxia-induced hypoxemia on decreases in cerebral blood flow or other organ flow may not be great and is unlikely to be of clinical significance. However, the independent vasoconstrictive effect of hyperoxia is too great in magnitude to be ignored. One cannot say that hyperoxia is harmless.

\textbf{Charles Her, M.D., F.C.C.P., New York Medical College, Valhalla, New York. charles6133@msn.com}

\textbf{References}

\textbf{In Reply.—} We thank Dr. Her for his comments on our article.1 He notes that a previous human study by Floyd \textit{et al.} demonstrated that the magnitude of the decrease in cerebral blood flow (CBF) induced by 100% oxygen administration is more profound than that of the increase in arterial oxygen content,2 which seems to support the notion that hyperoxia can induce tissue hypoxia. This study, which used arterial spin-labeled-perfusion magnetic resonance imaging, reported a 29-33% decrease in CBF during 100% oxygen breathing. If the 30% reduction were accurate, then Dr. Her may have a point. However, this reduction in CBF is significantly greater than what has been observed in other studies, in which the reduction has been on the order of 5-15%.3-5 Unfortunately the investigators in the Floyd \textit{et al.} study made unwarranted assumptions. For instance, they assumed that T1 for blood was the same during air and oxygen breathing despite published data to the contrary.6 This component of the lumped constant in their calculation of CBF leads to a 36% difference based on the T1 of blood with air versus oxygen breathing. Further, they assumed T1 in tissue to be similar to that in blood and suggest that violations of this assumption would cause only a small error. This is clearly not the case and is the reason for the overestimation of changes in CBF found in their study. In a recent article by Bulte \textit{et al.},5 in which 100% oxygen reduced CBF less than 10%, the changes in relaxation times of blood and tissue with increased Fio\(_2\) are confounders of the arterial spin labeled technique, and that failure to accurately account for them when calculating perfusion will lead to gross overestimation of hyperoxia-induced blood flow changes.

We agree with Dr. Her that acute hypoxemia can be associated with markers of ischemia, such as impaired psychomotor performance, at least in the arterial P\(_{\text{O}_2}\) range 20–25 mmHg.7 However, our original manuscript included data showing that during spontaneous breathing, the tendency of 100% oxygen administration to cause hypoxemia is either very small or does not exist.1 Tissue P\(_{\text{O}_2}\) regulates blood flow such that, although oxygen administration does induce vasoconstriction, there is a monotonically increasing relationship between arterial and tissue P\(_{\text{O}_2}\).8-10 This has also been observed in the retina.11 In a pig study, the administration of 100% oxygen reduced retinal blood flow by 62% but increased interarteriolar and intervascular P\(_{\text{O}_2}\).12 It is therefore unlikely that hyperoxia could contribute to retinal ischemia induced by an increase in intraocular pressure, and indeed there is direct evidence to the contrary.13 Oxygen administration also reduces coronary blood flow; however, in the study cited by Dr. Her,14 there is no evidence that the reduced coronary blood flow induced either ischemia or myocardial hypoxia.

With regard to Dr. Her’s comment on oxygen and postoperative wound infections, evidence suggests an inverse relationship between tissue P\(_{\text{O}_2}\) and infection rate,15 and the bulk of evidence supports the use of supplemental perioperative oxygen to reduce wound infection rate.16,17 The study by Pryor and colleagues cited by Dr. Her,18 which failed to demonstrate a beneficial effect, has been criticized on methodological grounds.19,20

In summary, peripheral blood flow is regulated to maintain tissue oxygenation in the face of alterations in oxygen delivery. There is no evidence that the autoregulatory decrease in tissue blood flow during hypoxia induces tissue ischemia or hypoxia.

\textbf{Ivy F. Forkner, M.D., Claude A. Piantadosi, M.D., Hal C. Charles, Ph.D., Nicola Scafetta, Ph.D., Richard E. Moon, M.D.*}

*Center for Hyperbaric Medicine & Environmental Physiology, Duke University Medical Center, Durham, North Carolina. moon0002@mc.duke.edu

\textbf{References}

\textit{(Accepted for publication August 31, 2007.)}
To the Editor — We read the article by Mhyre and colleagues with interest.† Although in the United Kingdom problems with tracheal intubation during obstetric general anesthesia remain the leading cause of death,‡ there were no cases in their series from 1985 to 2003 suggesting that anesthesia providers in Michigan have been able to address this risk successfully. This is especially commendable as the rate of general anesthesia deaths, largely resulting from intubation problems or aspiration, was stable in the United States from 1979 to 1990.§ Many deaths in Mhyre et al.’s article were related to problems occurring some time after the induction of anesthesia. There are considerable differences between the United States and United Kingdom in anesthesia staffing both in the operating room and on the delivery suite, but the United Kingdom Confidential Enquiries into Maternal Deaths have repeatedly highlighted the vital role of the anesthesiologist in overall maternity care rather than just during surgery.¶

However, we were surprised that there was no mention of regional anesthesia problems in the abstract or the accompanying editorial,∫ as this was the primary cause of three of four anesthetic-related deaths during cesarean delivery. Of the eight patients who died from anesthesia-related causes, three were in the first or second trimester. The five patients in their third trimester all underwent cesarean delivery. One patient who had received a spinal anesthetic died 9 h postoperatively, related to systemic morphine treatment. The type of anesthetic is irrelevant to the death as the patient would likely have had patient-controlled analgesia even if she had had general anesthesia. Only one of the four women in whom the sequence of adverse events started during surgery had a primary general anesthetic, whereas three had regional anesthesia: a respiratory event at the end of surgery with a spinal, a cardiopulmonary arrest with an epidural test dose (presumably from accidental spinal placement), and a cardiac arrest with a spinal. Deaths from obstetric regional anesthesia are rare,‡ and regional anesthesia is much safer than general anesthesia.¶∫ However, this rarity means that the risk of cardiac arrest may be forgotten and need to be relearned.‡

We need to recognize that cardiovascular collapse.§ and unconsciousness from high block¶ may occur suddenly at any stage during regional anesthesia and lead to morbidity or death unless managed promptly and effectively.∫ √

*St. Michael’s Hospital, Bristol, United Kingdom.
stephen.kinsella@uhs.nhs.uk

References
4. D’Angelo R. Anaesthesia-related maternal mortality: A pat on the back or a call to arms? ANESTHESIOLOGY 2007; 106:1082-4

(Accepted for publication September 7, 2007.)
In Reply.—We thank Kinsella et al. for their excellent comments. Our case series did include three women who suffered catastrophic complications after regional anesthesia for cesarean delivery.\(^1\) The mechanism of death in each of these cases was unique. One patient developed high spinal from an inadvertent intrathecal pharmacologic test dose during epidural catheter placement. Despite prompt and successful conversion to general anesthesia, she experienced massive myocardial infarction. Another died from neuraxial cardiac arrest following spinal anesthesia, with cardiovascular collapse preceding delivery of her neonate. The third patient became apneic en route to the postanesthesia care unit after a spinal anesthetic supplemented with intravenous medications. Regional anesthesia may be safer than general anesthesia,\(^2\) but respiratory arrest or cardiovascular collapse may still occur\(^1\) due to induction, maintenance, or recovery. Skills in basic airway management and cardiopulmonary resuscitation are essential for the entire team of perioperative care providers, regardless of whether the patient receives general or regional anesthesia.

To the Editor.—In a recent editorial,\(^1\) Pinsky elaborated on the use of the plethysmographic recording obtained from a pulse oximeter in assessing volume responsiveness before instituting volume resuscitation. Pinsky noted that the plethysmographic signal is dependent on the density of tissue and pulsatile blood in the pathway of the infrared and red wavelengths and that this “... will be a function of both perfusion pressure and vasomotor tone. As upstream vasomotor tone increases, for example, pulse oximeter plethysmographic changes would decrease for the same pulse pressure, and vice versa with vasodilation.” The question is, however, whether it is the density or the variation in density that defines the plethysmographic variability.

I have for a couple of years routinely monitored pulse oximetry and plethysmography (Datex-GE, Helsinki, Finland) bilaterally in the lower extremities during abdominal aortic aneurysm repair and unilaterally in peripheral vascular reconstructive surgery. The plethysmographic signal is the first and failsafe herald of peripheral perfusion, and the lack of it likewise immediately warns of thromboembolic complications after declamping.

During one such procedure involving popliteal artery reconstruction under general anesthesia and spontaneous ventilation using a laryngeal mask, the plethysmographic signal after declamping is shown in figure 1, with the insert showing highly irregular beat-to-beat variation in amplitude.

The variation corresponds to variation in amplitude seen in the arterial pressure recording of the radial artery. The “silent” period at approximately 150 s represents manual compression of vascular graft. A perivascular Doppler flow probe was attached to the graft measuring a flow of 100 ml/min. The surgeon decided to assess the flow reserve of the receiving vascular bed, and papaverine 40 mg was injected intraoperatively proximally to the graft. The Doppler signal instantaneously increased to 200 ml/min, and the ensuing plethysmographic recording is shown in figure 2. The plethysmogram was all but abolished in response to the injection of papaverine. The arterial pressure remained largely unaffected by the peripheral vasodilation.

Initially, the response baffled me as I was expecting an increase with vasodilation, as stated by Pinsky. On second thought, the explanation became evident: the plethysmographic signal in Datex-GE pulse oximeters is highpass filtered, which resets the oscillations to vary between

References

(Accepted for publication September 7, 2007.)
Herniation of the Laryngeal Mask Airway Classic

To the Editor:—I read with interest Wrobel and Ziegeler’s article1 that airway obstruction occurred during the use of a reusable laryngeal mask airway classic (LMA-Classic; The Laryngeal Mask Company, Henley-on-Thames, United Kingdom). In their report, a clear airway was obtained after insertion of a size 4 LMA-Classic and after inflation of the cuff with 20 ml air. During anesthesia, 10 ml air was added to the cuff to prevent airleak around the device, but the airway was obstructed. Close examination of the device after its removal showed that there was a cuff herniation that had not been detected at preuse checking.

In a previous study,2 which Wrobel and Ziegeler did not mention in their report, I showed that cuff herniation of the LMA-Classic may not be apparent if the cuff is inflated with the volume less than the recommended maximal volume (e.g., 30 ml for size 4) but may only become apparent when inflated with a volume of air 50% greater (45 ml). I also reported that if the cuff is inflated with smaller volume of air (e.g., 20 ml), there may be a dimple in the herniated part of the cuff, suggesting that there is a weakness of the cuff.2 Wrobel and Ziegeler1 stated that there was no problem at preuse checking, but the cuff was checked by inflating it with 20 ml air (Marc Wrobel, M.D., Department for Anesthesiology and Intensive Care Medicine, University of Saarland, Homberg/Saar, Germany; personal written communication, 2007). In figure 1 of their report,1 cuff herniation was apparent when the cuff was inflated with 40 ml air (Marc Wrobel, M.D., Department for Anesthesiology and Intensive Care Medicine, University of Saarland, Homberg/Saar, Germany, personal written communication, 2007), and when the cuff was inflated with smaller volume of air (fig. 2 of their report), there was a dimple in the herniated part of the cuff.1 These features are strikingly similar to results obtained in my previous article.2 Therefore, if the integrity of the cuff had been checked by inflating the cuff with 45 ml air in their case, airway obstruction resulting from the damaged LMA-Classic might have been avoided.

Wrobel and Ziegeler suggested that the use of a silicone lubricant may damage the cuff.1 I pointed out that sterilization of the device in an autoclave with the cuff not tightly deflated or before any fluid has been infused into the cuff may also damage the cuff.2 Any reusable device, particularly a well-used one, should undergo a proper preuse checking, and I suggest the following.

1. Before each use, the absence of cuff herniation (and any other deformities) should be confirmed by inflating the cuff with a volume of air 50% greater than the recommended maximal volume. This practice is now recommended by the manufacturer.
2. Before use, the absence of dimple in the cuff should be confirmed by inflating the cuff with 15-20 ml air.
3. After insertion of the LMA-Classic, the cuff should be inflated with approximately 15 ml air,3 and if airleak occurs around the cuff, air may be added until the cuff volume reaches the recommended maximal value.
4. If there is still airleak, the device should be removed, and a larger one should be used. The integrity of the removed device should be rechecked.

Takashi Asai, M.D., Ph.D., Kansai Medical University, Osaka, Japan. asai@tkii.kmu.ac.jp

References

1. Wrobel M, Ziegeler S: Airway obstruction due to cuff inflation of a classic reusable laryngeal mask airway. ANESTHESIOLOGY 2007; 106:1255-6

Fig. 2. Registration of plethysmographic signal and Doppler flow after injection of papaverin 40 mg intraarterially after reperfusion of extremity. The papaverin causes an increase in graft blood flow, but the dilatation and diminished pulsatile oscillations of the receiving vascular bed decrease the plethysmographic signal.

plethysmographic signal

Doppler flow: 200 mL/min

Doppler flow: 100 mL/min

Fig. 2. Registration of plethysmographic signal and Doppler flow after injection of papaverin 40 mg intraarterially after reperfusion of extremity. The papaverin causes an increase in graft blood flow, but the dilatation and diminished pulsatile oscillations of the receiving vascular bed decrease the plethysmographic signal.

To the Editor:—I read with interest Wrobel and Ziegeler’s article1 that airway obstruction occurred during the use of a reusable laryngeal mask airway classic (LMA-Classic; The Laryngeal Mask Company, Henley-on-Thames, United Kingdom). In their report, a clear airway was obtained after insertion of a size 4 LMA-Classic and after inflation of the cuff with 20 ml air. During anesthesia, 10 ml air was added to the cuff to prevent airleak around the device, but the airway was obstructed. Close examination of the device after its removal showed that there was a cuff herniation that had not been detected at preuse checking.

In a previous study,2 which Wrobel and Ziegeler did not mention in their report, I showed that cuff herniation of the LMA-Classic may not be apparent if the cuff is inflated with the volume less than the recommended maximal volume (e.g., 30 ml for size 4) but may only become apparent when inflated with a volume of air 50% greater (45 ml). I also reported that if the cuff is inflated with smaller volume of air (e.g., 20 ml), there may be a dimple in the herniated part of the cuff, suggesting that there is a weakness of the cuff.2 Wrobel and Ziegeler1 stated that there was no problem at preuse checking, but the cuff was checked by inflating it with 20 ml air (Marc Wrobel, M.D., Department for Anesthesiology and Intensive Care Medicine, University of Saarland, Homberg/Saar, Germany; personal written communication, 2007). In figure 1 of their report,1 cuff herniation was apparent when the cuff was inflated with 40 ml air (Marc Wrobel, M.D., Department for Anesthesiology and Intensive Care Medicine, University of Saarland, Homberg/Saar, Germany, personal written communication, 2007), and when the cuff was inflated with smaller volume of air (fig. 2 of their report), there was a dimple in the herniated part of the cuff.1 These features are strikingly similar to results obtained in my previous article.2 Therefore, if the integrity of the cuff had been checked by inflating the cuff with 45 ml air in their case, airway obstruction resulting from the damaged LMA-Classic might have been avoided.

Wrobel and Ziegeler suggested that the use of a silicone lubricant may damage the cuff.1 I pointed out that sterilization of the device in an autoclave with the cuff not tightly deflated or before any fluid has been infused into the cuff may also damage the cuff.2 Any reusable device, particularly a well-used one, should undergo a proper preuse checking, and I suggest the following.

1. Before each use, the absence of cuff herniation (and any other deformities) should be confirmed by inflating the cuff with a volume of air 50% greater than the recommended maximal volume. This practice is now recommended by the manufacturer.
2. Before use, the absence of dimple in the cuff should be confirmed by inflating the cuff with 15-20 ml air.
3. After insertion of the LMA-Classic, the cuff should be inflated with approximately 15 ml air,3 and if airleak occurs around the cuff, air may be added until the cuff volume reaches the recommended maximal value.
4. If there is still airleak, the device should be removed, and a larger one should be used. The integrity of the removed device should be rechecked.

Takashi Asai, M.D., Ph.D., Kansai Medical University, Osaka, Japan. asai@tkii.kmu.ac.jp

References

1. Wrobel M, Ziegeler S: Airway obstruction due to cuff inflation of a classic reusable laryngeal mask airway. ANESTHESIOLOGY 2007; 106:1255-6

Fig. 2. Registration of plethysmographic signal and Doppler flow after injection of papaverin 40 mg intraarterially after reperfusion of extremity. The papaverin causes an increase in graft blood flow, but the dilatation and diminished pulsatile oscillations of the receiving vascular bed decrease the plethysmographic signal.

plethysmographic signal

Doppler flow: 200 mL/min

Doppler flow: 100 mL/min

Fig. 2. Registration of plethysmographic signal and Doppler flow after injection of papaverin 40 mg intraarterially after reperfusion of extremity. The papaverin causes an increase in graft blood flow, but the dilatation and diminished pulsatile oscillations of the receiving vascular bed decrease the plethysmographic signal.
To the Editor—Fiberoptic intubation is a very useful technique for patients whose tracheas are difficult to intubate using conventional methods. However, insertion of a fiberscope and insertion of an endotracheal tube over the fiberscope into the trachea are two major difficulties.1 We encountered an unusual difficulty during removal of the fiberscope after successful tracheal intubation. Our search revealed no such difficulty reported in the literature.

A 30-yr-old man with atlanto-axial dislocation came for trans-oral decompression and posterior fixation. An awake intubation was planned. After adequate oral and intravenous sedation, bilateral superior laryngeal nerve blocks, and topical anesthesia to the airway, a bite block was inserted.

Endotracheal tube (8.5, polyvinyl chloride) was loaded over the fiberscope (Fujinon F B 120-p, Fujinon Corporation, Saitoma, Japan). A long catheter (drug spray cannula) was inserted through forceps port of the fiberscope for the administration of local anesthesia in the event of inadequate anesthesia. This catheter comes with a fiberscope set.

The fiberscope and endotracheal tube were inserted through the mouth. Excellent local anesthesia was observed while introducing the fiberscope and the tube into the trachea, which was performed within 30-40 s. The patient remained comfortable during and after intubation of the endotracheal tube without any sign of distress. Administration of local anesthesia was not required. With successful intubation, we tried to remove the fiberscope. Initially we felt some resistance. After applying slight force, the fiberscope came out but the injection catheter remained inside the tube. We were unable to remove the catheter with moderate force. To determine the reason, we reinserted the fiberscope into the trachea over the catheter. We noticed that the catheter had gone beyond the tip of the endotracheal tube, making a U shape over the edge of it. We removed the tube along with the fiberscope and the catheter. The catheter was not used during the second attempt of awake fiberoptic intubation, which was accomplished without difficulty. Subsequent endoscopic examination of the distal trachea and major bronchi revealed normal anatomy.

We hypothesized that during advancement of the endotracheal tube over the fiberscope, the injecting catheter migrated beyond the tip of the fiberscope. With further advancement, it became U shaped over the edge of the tube, and one arm of it got trapped between the tube and the trachea, which caused it to be stalked within the tube (figure 1).

Fig. 1. The drug injection catheter protruding out from the fiberscope and making a U shape over the tip of the endotracheal tube simulating the condition in situ.

Inadvertent advancement of the tip of the fiberscope through a side hole (Murphy eye) of an endotracheal tube, causing difficulty in intubation has been reported.2

To eliminate this kind of problem with the use of an injection catheter, we suggest a simple measure. The catheter should be fixed with adhesive tape or a rubber band at the inlet of the forceps port so that it will not protrude from the tip of fiberscope in situ.

Prabhakar Suman Prakash, M.D., Mihir Prakash Pandia, M.D.*
Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India. mhirpandia@yahoo.co.in

References

(Accepted for publication September 7, 2007.)

Support was provided solely from institutional and/or departmental sources.