Altered Perfusion, Ventilation, Anesthesia and Lung-surface Forces in Dogs

Sybil W. Woo, M.D.,* Dorothy Berlin, M.A.,f Uta Büch, M.D.fł John Hedley-Whyte, M.B.§

Abstract

The combination of hyperventilation, lowered pulmonary blood flow and pentobarbital- O_{2} anesthesia led to a progressive increase in retractive forces of the lung accompanied by a gradual reduction in inflatable volume in dogs studied for cight hours. After four hours of ventilation, significant changes began to appear at the higher transpulmonary pressures. Results after four hours of ventilation were similar in other dogs treated identically except for the addition of 1.2 per cent halothane to the inspired gas. Hyperventilation and the absence of pulmonary arterial blood flow led to significant ($P<0.05$) reductions in percentages of maximum lung volumes during deflation pressure-volume loops in shorter periods of time regardless of anesthetic technique. The effect of anesthesia on lung-surface forees in living dogs appears small compared with the effects of hyperventilation and diminished blood flow. (Key words: Myperventilation; Blood flow; Surfactant; Halothane; Barbiturate; Pressure-volume relationships.)

Tiif effects of halothane, chloroform and nitrous oxide on surface-active forces in excised unperfused dogs' lungs have been reported. ${ }^{1}$ Changes in deflating pressure-volume slopes reflect changes in surfactant function.--c With excised unperfused dogs' lungs percentages of maximum lung volume (\%MLV) after venti-

[^0]lation with halothane and chloroform at 23 C were less than after ventilation with air alone, but only with halothane were the lung volumes significantly smaller at the end of the study.: This demonstration that lipid-soluble anesthetics could alter surfactant function during ventilation in freshly excised dogs' lungs prompted the question whether deleterious effects of anesthetics on surfactant performance could be detected in normothermic dogs after thoracotomy. To this purpose, the interactions of hyperventilation, pulmonary blood flow, anesthesia and lung-surface forces were investigated in intact dogs.

Methods

Fifty mongrel dogs (weighing $7.2-13.5 \mathrm{~kg}$) were anesthetized with intravenous pentobarbital sodium, $30 \mathrm{mg} / \mathrm{kg}$. Each dog was supine on a K-thermia blanket (model R.K. 101, Gor-man-Rupp Industries, Inc., Belville, Ohio), and the esophageal temperature was monitored by an indwelling thermistor (Yellow Springs Co.). The temperature of the dog was kept between 35 and 38 C . To insure that esophageal temperatures accurately reflected body temperatures, rectal temperatures in ten dogs were recorded simultaneously. Both femoral arteries were cannulated for arterial sampling and for measurement of arterial pressure. A femoral vein was cannulated to allow for injections of 6 per cent dextran in saline solution to replace blood loss and removal. No other fluid replacement was given. A right atrial catheter was passed via a jugular vein. Tracheostomy was performed and a modified Carlens tube was placed on the carina; the modification involved the addition of metal connectors with machined threeway metal stopcocks. The intraluminal pressures were then monitored by attachment to a Hewlett-Packard 7718 system by Sanborn highsensitivity transducers (series ${ }^{-6 S B}$). Great

Fic. 1. Deflation pressure-volume curves. Means of measurements from ten dogs are given in each panel. Hyperventilation ($50 \mathrm{ml} / \mathrm{kg}$ body weight, Pawe approximately 20 torr) of dogs anesthetized with pentobarbital-1.- per cent halothane or pentobarbital alone led to a progressive increase in lung retractive forces after ligation of the pulmonary artery. Changes were significant at transpulmonary pressures $15-7.5 \mathrm{~cm} \mathrm{H} \mathrm{H}=\mathrm{O}$ after three to four hours, $P<0.05$ (tables 1 and 2).
care was taken to secure an airtight fit to each lung by inflation and maintenance of constant pressure. Succinylcholine $\mathbf{H C l}, \mathbf{5 0 0} \mathrm{mg}$, was given intrumuscularly initially and subsequently when needed. A right thoracolomy was performed in each dog. The right pulmonary artery (PA) was ligated in each of 20 dogs. All 50 dogs were ventilated at a rate of 20 breaths/min. A tidal volume of $50 \mathrm{ml} / \mathrm{kg}$ was produced by an Emerson postoperative ventilator; the inspiratory/expiratory ratio was $1: 2$ A Wright respirometer was used to check the tidal volume delivered. The inspired oxygen concentration was maintained between 85 and 90 per cent and monitored with a Beckman E2 paramagnetic oxygen analyzer.

The lung quasistatic volume-pressure relationships were studied in the following manner: The right lung was gently aspirated to minimum volume; dry USP helium (99.9 per cent pure) was injected into the right lung in $100-\mathrm{ml}$ increments every $2-3 \mathrm{sec}$ while the airway pressure was recorded with a calibrated Sanborn transducer. After an airway pressure of $30 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ had been reached and maintained for 5 sec , helium was aspirated in
$50-\mathrm{ml}$ increments until the airway pressure reached zero; after the withdrawal of each 50 ml , time was allowed for the pressure to stabilize before the next withdrawal (2-3 sec). With new helium the process was repeated twice more; the third determination was used to plot the volume-pressure diagrams. Gas volume in the lung was corrected for temperature, pressure, and water vapor according to the following formula:

$$
V_{C}=\left(V_{1} \cdot P_{1} \cdot T_{B}\right) / T_{\mathrm{B}}\left(P_{S}-P_{W}\right)
$$

where $V_{C}=$ corrected gas volume, $V_{i}=$ volume of dry USP helium injected, $\mathrm{P}_{\mathrm{p}}=$ barometric pressure, $\mathrm{T}_{\mathbf{1}}=$ esophageal body temperature, $\mathrm{T}_{1 \mathrm{t}}=$ room temperature, $\mathrm{P}_{\mathrm{A}}=$ ainvay pressure, and $P_{w}=$ water vapor pressure. The amount of helium and water vapor withdrawn during each deflation was subtracted from the total corrected lung volume. The amount of helium and water vapor remaining within the lung at the beginning of the third volumepressure loop reflected the residual lung volume and was the starting point of inflation for the volume-pressure study. No correction for oxygen or carbon dioxide diffusion out of the
applied.s. 3 Immediately before arterial sampling cardiac output was determined by analysis of dye-dilution curves with a Gilson densitometer (model DTL) after injection of indocyanine green. Amplification and recording were via the Hewlett-Packard 7718 system. Cardiac outputs were calculated using the forward-triangle method. ${ }^{\text {to }}$ Cardiac indices were calculated after obtaining the body surface area by the equation of Rubner. ${ }^{11}$ For comparison of lung volumes, expressed as percentages of maximum lung volume (cMLV), a t test for paired variates was used when measurements from the same dog were obtained. Student's t test for unpaired variates was employed when we compared measurements obtained from different dogs. Significance values (P) for t were obtained from the table of Fisher and Yates. ${ }^{12}$ All dogs were sacrificed at the end of the experiment.

Results

Docs With Pelmonany-Abtery Ligation

Hyperventilation and absence of pulmonary arterial blood flow for four hours led to a significant ($P<0.05$) reduction of $c_{c}^{c} M L V$ during deflation at transpulmonary pressures (P_{Tr}) frem 15 to $7.5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ (fig. 1 , tables 1 and 2). Mean cicMLV decreased with time of ventilation after ligation of the pulmonary artery (fig. 1). The depression of ccMLV was threefold

Tahle: 1. Lumg Presinte-Volume Changes daring Deflation in Ten Dage after Ligation of the Pulmonary Artery and Hyperventilation with 1.2 ± 0.1 os Per Cent Halothame in 0 : for : $3-4$ Hours

	$\begin{gathered} \text { Contrul: } \\ (\underset{6}{2}: 11 N) \end{gathered}$					$\frac{2-3 \text { Hum }}{(\vec{c} \cdot \mathrm{MIF})}$			$\begin{aligned} & 3-4 \text { Hours } \\ & \text { (r. MLV) } \end{aligned}$		
	Mean	SD	Mean	sD	${ }^{2}+$	Mean	sD	${ }^{+}$	Mean	sD	P \dagger
$\mathrm{P}_{\mathrm{TP}}\left(\mathrm{~cm} \mathrm{H}_{2} \mathrm{O}\right)$	9.4	4.1	94.1	4.0	Nis	933.3	4.0	Ns	92.6	4.8	NS
$\underline{0}$	S9.s	3.5	90.5	4.2	N:	S7.0)	6.5	NS	56.5	7.0	NS
15	53.3	8.1	S3.2	-i.2	Ns	7 T .4	12.5	TS	73.5	10.9	<0.0.5
12.3	76.9	6.2	76.4	6.7	NS	69.3	15.0	Ns	6.9 .2	14.7	<0.0.7
10	6s.2	8.2	66.9	85	N:	39.3	16.6	Vs	54.3	16.9	<0.0.
7.5	- H .9	6.0	-33.3	S. 7	Ss	47.4	16.2	NS	40.9	16.0	<0.0.7
\%	: $\%$ \% 4	7.s	37.10	8.5	NS	:32. 1	13.1	NS	26.1	12.6	<0.03
0	:3:3	16.2	0.5	1.9	Ns	4.2	6.9	NS	2.5	5.1	NS
$\mathrm{MLV}(\mathrm{ml})$	itl	170	in2	148	SN	499	13:3	<0.1	438	127	<0.01

* Pressure-volume loop measured after PA ligation and before hyperventiation.
\dagger In comparison with the control (paired variates).
\ddagger Not significant.

Table 2. Lung Pressure-Volume Changes during Defation in Ten Dogs after Ligation of the Pulmonary Artery and Anesthesia with Pentobarbital and Hyperventilation for 3-4 Hours

			$\begin{aligned} & 1-2 \text { Hours } \\ & \left(\mathrm{F}_{\mathrm{c}} \mathrm{MLH}\right) \end{aligned}$			$\begin{aligned} & 2-3 \text { Hours } \\ & (\% \times \mathrm{MLV}) \end{aligned}$			3-7 Hours		
	Mean	SD	Mean	SD	${ }^{4}$	Mean	SD	Pt	Mean	SD	${ }^{\text {P }}$
$\mathrm{P}_{\underline{\mathrm{TP}}}\left(\mathrm{~cm} \mathrm{H}_{2} \mathrm{O}\right)$	93.5	2.8	94.9	3.5	N:+	92.3	3.7	SS	91.6	3.6	<0.0.)
$\underline{20}$	S0.9	3.4	90.6	4.0	- N	STS.	4.3	<0.0.	50.4	4.0	<0.01
15	S3.5	E. 2	S4. 6	6.0	NS	79.2	7.4	<0.02	76.6	7.8	<0.01
12.5	7.6	6.1	$7 \mathrm{Cs}$.	7.6	-is	71.4	5. 2	<0.0ㅇ	68.1	9.4	<0.01
10	6S. 5	6.5	69.7	5.0	N	62.0	10.4	<0.03	58.3	10.1	<0.01
7.5		6.6	37.6	9.1	NS	40.3	10.4	<0.t2	46.1	10.0	<0.01
5	35.1 -1.1	7.6 2.9	35.6 $\mathbf{2 . 0}$	14.4 4.9	- 2	23.1	9.3	SS <0.1	31.5 5.10	7.4 6.7	15 <0.01
0	-1.0	2.5	$\underline{.0}$	4.9	<0.1	1.5	\%. 4	<0.1	5.10	0.7	<0.01
MILV (mal)	530	138	537	156	SS	$\cdots 20$	1:34	NS	458	119	NS

* Pressure-volume loop messured after PA ligation and before hyperventilation-
\dagger In comparison with the control (paired variates).
\ddagger Not significant.
greater after pulmonary arterial ligation than with intact pulmonary arteries, the anesthetic and pressure-volume histories being identical (tables 1-4). No significant difference in reduction of ToMLV ascribable to differences in anesthetic technique (pentobarbital-halothane vs. pentobarbital) was found, although after PA ligation mean \%MLV at $\mathrm{P}_{\text {Tr }} \quad 20-5 \mathrm{~cm}$ $\mathrm{H}_{2} \mathrm{O}$ was always lower with pentobarbitalhalothane 1.2 per cent anesthesia (fig. 1 , tables 1 and 9); the maximum inflatable volumes were significantly less in dogs ventilated with halothane after three to four hours (table 1).

Docs Witholt Pllmonary-arteny Ligation

For dogs without ligation of the pulmonary artery the combination of hyperventilation, diminished pulmonary blood flow and pento-barbital-halothane- O_{2} anesthesia led to a significant increase in retractive forces of the lung at one transpulmonary pressure ($\mathrm{P}_{\mathrm{TP}}{ }^{12.5}$ $\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$) in approximately four hours; at other transpulmonary pressures between 25 and 10 $\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$, mean \% $\%$ MLV was lower after three to four hours of ventilation, although these ehanges were not significant (table 3).

Table 3. Lung Preseure-Volume Change during Deflation in Ten Dogs IIyperventilated with 1.2 ± 0.05 Per Cent Halothane in O_{2} for $3-4$ Hours after Thoracotomy Alone

	Controi*		$\begin{aligned} & \text { i-2 Hours } \\ & \text { (\%MLV) } \end{aligned}$			$\begin{aligned} & 2-3 \text { Hours } \\ & (\% \times \mathrm{MLV}) \end{aligned}$			$\begin{aligned} & 3-4 \text { Houra } \\ & \text { (\% MLV } \end{aligned}$		
	Mean	SD	Mean	SD	Pt	Mean	SD	P \dagger	Mean	sD	Pt
$\mathrm{P}_{\mathrm{TP}}\left(\mathrm{~cm} \mathrm{H}_{5} \mathrm{O}\right)$							2.6	NS	93.4	2.8	<0.1
$\begin{aligned} & 25 \\ & 20 \end{aligned}$	94.9 91.0	2.9 3.3	94.9 90.3	$\underline{2.7}$	NS	94.3 90.4	3.6	NS	39.7	2.4	NS
$\underline{15}$	91.0 S4.5	4.3 4.6	S4. 0	5.1	-	S3.6	4.7	NS	S2. 2	4.7	SS
12.5	79.0	6.0	7.6	6.5	NS	77.4	0.5	<0.1	75.7	5.8	<0.0.
10	69.6	7.6	68.2	S. 2	NS	6 ES .9	5.5	NS	67.9	7.2	NS
7.5	55.9	S. 4	54.5	8.5	NS	56.0	S. 7	NS	$5 \mathrm{5} . \mathrm{S}$	8.3	2S
5	36.1	9.3	37.6	S. 6	NS	40.1	9.8	NS	40.2	8.4 4.9	NS
0	0.9	6.9	2.5	4.5	NS	7.0	S. 4	<0.01	3.9	4.9	NS
MLV (mi)	5s1	196	581	207	NS	575	150	Ss	254	206	NS

[^1]Thale 4. Lang Presure-Volume Changes during Deflation in Ten Dogs Anesthetized with Pentobarbital and Iyperventilated for 3-4 Hours after Thoracotomy Alone

	${ }_{\text {Control* }}^{\text {Com }}$		$\begin{aligned} & \mathrm{I}-\frac{2}{} \text { Hours } \\ & \text { (Fi6 MLV) } \end{aligned}$			$\frac{2-3 \text { Hours }}{\left(C_{0}^{2} M L W\right)}$			$\begin{aligned} & \text { 3-4 Hours } \\ & \left(\mathrm{F}_{6} \mathrm{MLV}\right) \end{aligned}$		
	Mean	SD	Meas	SD	P \ddagger	Mean	sD	${ }^{+1}$	Mean	SD	Pr
$\mathrm{P}_{\text {TP }}(\mathrm{cmin}$ H:O)				3.5	23:	9.). 0	4.1	NS	93.7	4.5	<0.05
25 20	95.6 91.5	3.5 4.0	95.1 91.4	3.5	NS	9.9	4.5	NS	59.7	4.7	<0.05
15	56.4	3.7	S6. 3	4.9	Ns	S4.3	5.S	<0.1	S3.7	$5 . S$	<0.1
12.5	S0.8	5.2	S0.6	6.6	NS	7S. 9	7.9	NS	79.0	7.4	N
10	71.7	6.4	7-3	S.2	Ns	70.7	9.6	NS	70.0	S. 9	SE
7.5	$5 \overline{75}$.S	S. 0	59.7	9.2	S	37.9	11.1	S	3S. 1	10.0	Ss
5	3 S .4	9.1	4.6	10.0	Ns	41.0	10.0	Ns	+12.5	11.4	<0.1
0	1.5	5.9	3.4	4.5	NS	4.6	6.6	NS	12.0	7.2	<0.001
$\operatorname{MLV}(\mathrm{ml})$	473	118	4.4	91	Ns	411	97	<0.02	4.4	115	NS

* Pressure-Volume loop measured after thoracotomy and before hyperventiation.
\dagger In comparison with control (paired variates).
\ddagger Not significant.

In ten dogs hyperventilated for three to four hours under pentobarbital anesthesia alone, significant changes were noted at the higher transpulmonary pressures ($\mathrm{P}_{\mathrm{Tr}} 20$ and 25 cm $\mathrm{H}_{2} \mathrm{O}$) (table 4). The maximum inflatable volumes in both groups decreased with time, but the changes at four hours still were not significant.
In ten other dogs studied for eight hours under pentobarbital anesthesia, significant changes became apparent at the higher transpulmonary pressures at six and eight hours (fig. 2, table 5). The greatest decrease in GMLV was 12 per cent at $\mathrm{P}_{\mathrm{TP}} 10 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$. Concomitant with the volume-pressure effect was an 18.5 per cent decrease in inflatable volume.
Cardiac indices and acid-base status are shown in table 6. No significant difference between esophageal and rectal temperatures (mean $3 \overline{7} \mathrm{C}$) was found.

Discussion

A reduction in pulmonary blood flow is associated with impairment of surface activity of the alveolar lining.s, 6, 13-15 Following ocelusion of the pulmonary artery, alveolar perfusion is partially maintained by the bronchial circulation; the contribution of this flow in providing substrate for surfactant formation was demonstrated by Naimark, who found a 90 per cent reduction in incorporation of palmitic acid, a precursor of surfactant, after
ligation of the pulmonary artery in dogs. ${ }^{16}$ In excised dogs' lungs devoid of pulmonary blood flow, surface activity is dependent on the de-

Fic. 2. Deflation pressure-volume curves for ten dogs hyperventilated for eight hours under pentobarbital anesthesia. In contrast to the experiments illustrated in figure 1, the right pulmonary artery was not ligated. Hyperventilation ($50 \mathrm{ml} / \mathrm{kg}$ body weight, Paco: approximately 15 torr) led to a progressive increase in lung retractive forces. Changes were significant at transpulmonary pressures $10-25 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$ after eight hours (table 5).
gree of stretching of the alveolar lining, adequate oxygenation, temperature and the presence of metabolic inhibitors such as anesthetic agents. ${ }^{2,15,1 \div}$ The greater the ventilation, the larger the consumption of oxygen and glycogen. ${ }^{13}$ Consequently, the interaction of hyperventilation, diminished pulmonary blood flow and anesthesia can influence the rate of impaiment of surface activity.

In this study, reduction in pulmonary blood flow was accomplished by various means: first, by mechanical occlusion of the right pulmonary artery; second, by decreasing cardiac output. The latter is a result of two effects, that of the anesthetic agent on myocardial function and that of diminished venous return produced by increased intrathoracic pressure. After ligation of the pulmonary artery, the increase in retractive forces of the lung is progressive and significant after two to three hours of hyperventilation even with an intact bronchial circulation.

When lungs are overinflated, pulmonary edema, atelectasis, hemorrlage and alterations in surface forces may ensue. ${ }^{20-s=}$ Cross atelectasis after prolonged hyperventilation was not apparent in this study, but maximum inflatable volume had decreased by 18.5 per cent after eight hours. However, this reduction in MLV, representing noninflatable areas, should not contribute to alterations in measurements of pulmonary volumes expressed as \%c.MLV and, therefore, cannot fully account for any accompanying increase in retractive forces. ${ }^{+}$For instance, Edmunds and Huber found no change in helium or saline pressure-volume loops, expressed as CcMLV, after ligation of the pulmonary arteries of dogs, although the maximum inflatable volumes were reduced.s Their surgical procedure for pulmonary arterial ligation lasted $20-10 \mathrm{~min}$; the dogs were not hyperventilated and were allowed to awaken and breathe spontaneously until sacrificed for excised lung pressure-volume loop measurements. Gross pathologic changes were present a day after ligation of the artery; but only a few focal areas of blood-filled alveoli were present. These areas of hemorrhagic atelectasis tended to become comfluent as time passed, but there was no change in the pulmonary static recoil of the inflatable portions of dogs

	Time on Ventilation		P'ame (tort)		pH_{4}		Cardiac Index ($1 / \mathrm{m}^{2} / \mathrm{min}$)	
	Mean	se	Mean	SE	Mean	SE:	Mean	sE
Pentobarlital-hatothante, ten doge:	0		27.3	20	7.41	0.02	0.8	0.3
	6.5	2.7	12.4	1.1	7.62	0.0)2	1.8	0.3
	1 SS	5.9	12.0	1.17	7.i4	0.102	1.3	0.3
	$\cdots 1!$	7.7	11.5	1.0	7.i. ${ }^{\text {a }}$	0.62	1.2	0.2
Pentobarbital-halothane and PA ligation, ten doges	0		-9,3	1.9	-4.42	0.03	3.1	0.2
	6.)		16.7	1.6	7.80)	0.0:	1.4	0.1
	1 F	4.4	17.3	1.6	7.45	0.012	1.3	0.2
	2.26	6.4	$\underline{-2.7}$	$\because .3$	7.32	0.104	1.2	0.1
Pentoimarbital, ten dogs	0		26.9	2.1	7.4\%	0.02	3.0	0.3
	163	2.6	13.7	1.4	7.67	0.103	1.6	0.2
	149	3.8	11.8	0.5	7.56	0.02	1.5	0.1
	2.8	S. 0	14.7	1.9	7.is	0.102	1.5	0.1
Pentobarbital and PA ligation, ten dops	0		830.6	2.5	7.44	0.10:	:3.2	0.4
	66	2.7	16.1	1.4	7.\%.)	0.0:3	$\underline{0.0}$	0.3
	161	4.3	15.1	1.6	7.50)	0.04	1.7	0.3
	290	5.1	2:3.7	3.4	7.40	0.06	1.7	0.2
Pentobarbital, ten dogs	0		$2 \overline{2} .1$	10.1	7.30	0.09	3.2	0.9
	120	$\underline{3} .10$	13.5	$\underline{-3}$	7.-99	0.08	2.6	0.6
	98	1.7	1:3.6	$\stackrel{.}{-6}$	$7 . .6$	0.07	2.2	0.7
	360	$\underline{.6}$	13.1	2.6	7. 8.1	0.14	\cdots	1.1
	47 S	3.4	17.0	4.4	7.39	0.07	1.9	0.8

lungs for as much as a week after ligation of the pulmonary artery:- The lack of change in surface forces of inflated alveoli in their study can be attributed to the lower level of ventilation and, thus, lower demand for surfactant.

With intact but diminished pulmonary circulation (cardiac output approximately 50 per cent of normal), significant depressions in \%MLV were seen at high pulmonary volumes after eight hours of hyperventilation. Such changes have been interpreted as early evidence of diminished surfactant function. ${ }^{*}$ In the presence of marginal circulation the increase in retractive forces is accentuated by extreme hyperventilation. This maximal stretching and compression of the alveolar surface lining depletes the supply of surfactant and overcomes the rate of its synthesis and replacement.:= Although the turnover rate of surfactant is unknown, the turnover rate of dipalmitoyl lecithin (a major component of surfactant) is estimated from studies in rats to be 14 hours under conditions of spontaneous normal ventilation and perfusion. ${ }^{3 x}$

Faridy has shown that ventiation of the left Icwer lobes of dogs with tidal volumes which are 30 per cent of maximum lobar air volumes does not affect surfactant function provided total blood flow is at least 15 per cent of the control value. ${ }^{13}$ The rate of ventilation of Faridy's study was 12 breaths $/ \mathrm{min}$, whereas we ventilated at 20 with a tidal volume which was approximately 60 per cent of MLV. Consequently, it would seem that the increased ventilation we used stressed surfactant function to a point where an increase in perfusion from 15 to 50 per cent of normal was barely sufficient to allow for adequate metabolism and replacement. ${ }^{13}$ This concept is supported by the effect of temperature on surfactant function. Ventilation of excised dogs' lungs at room temperature (94 C) with a tidal volume of 30 per cent MLV leads to significant depression of surfactant function after two hours, but no depression at $3 \overline{7}$ C. ${ }^{15}$ The depression produced by ventilation at 24 C is reversed by incubation at 37 C. ${ }^{17,} 15$ Initial attempts to lower body temperature to 32 C in our study
resulted in high mortality and were abandoned. Hypothermia by lowering surfactant metabolism would be expected to accentuate the changes we report.

The method we used to assess lung retractive forces is fraught with possible errors. Accurate measurement of quasistatic intratracheal pressure is difficult in the time allowed for pressure stabilization ($0-3 \mathrm{sec}$); in addition, inaccuracies are contributed by the small quantities of helium that escape from the lungs and the CO_{2} and O_{2} that diffuse in. To minimize these problems the same point of the asymptotic lung-pressure curve was taken on all measurements. It might have been advantageous to have postrnortem excised pressurevolume loops in order to determine surfactant function, but the lungs were biopsied for other studies.

In our previous study of excised unperfused dogs' lungs we found that the lipid-soluble anesthetics, lalothane and chloroform, depressed surfactant function more than the barbiturate when other experimental conditions were identical. ${ }^{1}$ In the present study we did not find any significant added elfect on surfactant function of a lipid-soluble inhalation anesthetic (halothane 1.2 per cent in oxygen after pentobarbital induction) over continued barbiturate anesthesia, although changes were always greater with the addition of halothane. The effect of anestliesia on surfactant function appears small compared with the effects of hyperventilation and lowered blood flow.

References

1. Woo SW, Berlin D, Hedley-Whyte J: Surfactant function and anesthetic agents. J Appl Physiol 26:571, 1969
2. Clements JA, Hustead RF, Johnson RP, et al.: Pulmonary surface tension and alveolar stability. J Appl Physiol 16:444, 1961
3. Gruenwald P: A numerical index of the stability of lung expansion. J Appl Physiol 18: 665,1963
4. Johnson JWC, Permutt S, Sipple JH, et al.: Effect of intra-alveolar fluid on pulmonary surface tension properties. J Appl Physiol 19:769, 1964
5. Edmunds LII Jr, Huber GL: Pulnonary artery ocelusion. I. Volume-pressure relationships and alveolar bubble stability. J Appl Physiol 29:990, 1967
G. Chernick V, Hodson Wh, Greenfield LJ: Effect of chronic pulmonary artery ligation on pulmonary mechanics and surfactant. J Appl Physiol 21:1315, 1966
6. Edmunds LH Jr, Austen WG: Elfect of cardiopulmonary bypass on pulmonary volumepressure relationships and vascular resistance. J Appl Physiol $21: 209,1966$
7. Hedley-Whyte J, Laver MB: O = solubility in blood and temperature correction factors for Po. J Appl Physiol 19:901, 1964
8. Severinghaus JW: Blood gas calculator. J Appl Physiol 21:110S, 1966
9. Hetzel PS, Swan HJC, Ramirez De Arellano AA, ct al.: Estimation of cardiac output from first part of arterial dye-dilution curves. J Appl Physiol 13:92, 1958
10. Rubner M: Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Z Biol 19:535, 1853
11. Fisher RA, Yates F: Statistical Tables for Biological Agricultural and Medical Research. Sixth edition. New lork, Hafner, 1963, p 46
12. Faridy, EE: Effect of alterations in $\mathrm{P}_{\mathrm{O}}, \mathrm{P}_{\mathrm{co}}$, pH , and blood flow on elastic behavior of dogs' lungs. J Appl Physiol $27: 342,1969$
13. Findey TN, Tooley WH, Swenson EW, et al.: Pulmonary surface tension in experimental atelectasis. Amer Rev Resp Dis 89:372, 1964
14. Giammona ST, Mandelbaum I, Foy J, et al.: Effects of pulmonary artery ligation on pulmonary surfactant and pressure-volume characteristies of dog lung. Circ Res 18: 683, 1966
15. Naimark A: Pulmonary blood flow and the incorporation of palmitate-1-C" by dog lung in vivo. J Appl Physiol 21:1093, 1966
16. Faridy EE, Permutt S, Riley RL: Effect of ventilation on surface forces in excised dogs' lungs. J Appl Physiol 21:1453, 1966
17. McClenahan JB, Urtnowski A: Effect of ventilation on surfactant and its tumover rate. J Appl Physiol 23:215, 1964
18. Faridy EE, Naimark A: Effect of ventilation on lung metabolism (abstract). Fed Proc 29:661, 1970
19. Greenfield LJ, Ebert PA, Benson DW: Effect of positive pressure ventilation on surface tension properties of lung extracts. Avesthesiology 25:312, 1964
20. Pattle RE: Properties, function and origin of the alveolar lining layer. Proc Roy Soc (Biol) series B 148:ㄹ17, 1958
21. Tierney DF, Johnson RP: Altered surface tension of lung extracts and lung mechanics. J Appl Physiol 20:1253, 1965
22. Tierney DF, Clements JA, Trahan 1HJ: Rates of replacement of lecithins and alveolar instability in rat lungs. Amer J Physiol 213: 671, 1967

[^0]: - Instructor in Anaesthesia, Harvard Medical School, and Assistant Anaesthetist, Beth Israel Hospital.
 \dagger Predoctoral Fellow, Department of Physiology, Georgetown University, Washington, D. C.
 \ddagger Research Fellow in Anaesthesia, Beth Israel Hospital, and Research Fellow in Anaesthesia, Harvard Medical School.
 $\$$ Professor of Anaesthesia, Harvard Medical School, and Anaesthetist-in-Chief, Beth Israel Hospital.

 Received from the Department of Anaesthesia, Haryard Medical School, and Beth Irrael Hospital, Boston, Massachusetts 02215. Accepted for publication June 15, 1970. Supported in part by USPHS Research Grant G.M 15904.03. Presented in part at the American Society of Anesthesiologists Annual Meeting, San Francisco, October 28, 1969.

[^1]: - Pressure-Volume loop measured after thoracotomy and before hyperventilation.
 \dagger In comparison with control (paired variates).
 \ddagger Not significant.

